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Abstract 

We give some conditions for closed images of spaces with a point-countable k-network to 
have a point-countable k-network, and their applications. 
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1. Introduction 

Let X be a space, and let ZF be a cover (not necessarily open or closed) of X. 

We recall that ZF is a k-network [16], if whenever KC U with K compact and U 

open in X, then K c lJ 9 c U for some finite 9’ CT. If we replace “compact” by 
“single point” then such a cover is called a “network”. A closed (respectively 
compact) k-network is a k-network consisting of closed subsets (respectively 

compact subsets). k-networks have played a role in N,-spaces [131 (i.e., spaces with 

a countable k-network), H-spaces [16] (i.e., spaces with a a-locally finite k-network). 

As a modification of k-networks, we recall that a cover 9 of X is a u-network 

(i.e., convergent sequence network) [9], if whenever {x,} is a sequence converging 

to a point x EX and U is a nbd of x, then for some P ~9 and some n EN, 

Ix1 u {.&. . m 2 n] c P c U. Also, we recall that a cover 9 is a cs*-network [7], if 

we replace “Ix m: m > n)” by “some subsequence of {x,J)“. We shall call a cover 2S’ 

a wcs*-network, if we replace “Ix} u {x m: m z= n]” by “some subsequence of Ix,}“. 
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In [20], cs*-networks, or wcs*-networks were called covers satisfying (C,), or (C,) 
respectively. We recall that a cover is point-countable if every point is in at most 
countably many elements of it. A point-countable cover is a wcs*-network if and 
only if it is a wcs-network [15] ( = Fcs-network [6]). Spaces with a point-countable 
k-network play an important role in the theory of generalized metric spaces, 
certain quotient spaces, and their metrizability; see [8,11,20,211, for example. 

Now, spaces with a point-countable cs-network, cs*-network, or closed k-net- 
work are not necessarily preserved by closed maps (even if the domains are locally 
compact metric). But, spaces with a point-countable k-network are preserved by 
perfect maps [8], and closed images of X-spaces have a point-countable k-network 
[20]. Then the following question arises: 

Question. Does every closed image of a space with a point-countable k-network 
have a point-countable k-network? 

In this paper, we show that this question is affirmative when the domain is a 
k-space, a paracompact space, or a space in which every point is a G,-set. Also, we 
give some applications of these partial answers. 

We assume that spaces are regular T,, and maps are continuous and onto. 

2. Results 

First let us give some lemmas. The following lemma is due to [20]. 

Lemma 1. Let 9 be a point-countable cover of X. Then 9 is a k-network if and only 
if it is a wcs*-network, and every compact subset of X is sequentially compact. 

Let X be a space, and let %Y be a cover of X. We recall that X is determined by 
%? [S] (or X has the weak topology with respect to %Y) if F CX is closed in X if 
and only if F fl C is closed in C for every C E %Y. 

We recall that a space X is a sequentiaE space (respectively k-space) if X is 
determined by the cover of all compact metric (respectively compact) subsets. A 
space is Frechet if whenever x ~2, then there exists a sequence in A converging 
to the point x. Any FrCchet space is sequential, and any sequential space is a 
k-space. It is well known that every sequential space (respectively k-space) is 
precisely the quotient image of a metric space (respectively locally compact space); 
see, [3, 2.4.G], etc. 

Lemma 2. Let f : X + Y be a closed map. Let K be a countably compact subset of Y, 
and let S = {x,: n EN} be a sequence in f-‘(K) such that f(x,> Z f(x,) if m Z n. If 
(a) or (b) below holds, then there exists a convergent subsequence of S. 

(a) X is a sequential space, 
(b) each point of X is a G,-set. 
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Proof. Any subsequence of {of: IZ EN} has an accumulation point in K. Thus, 

since f is closed, it follows that any subsequence of S has also an accumulation 

point in f-‘(K). If (a) holds, since S is assumed to be not closed in X, there exists 

a convergent subsequence of S. If (b) holds, let x be an accumulation point of S, 

and let {V,: n EN} be a sequence of open nbds of x such that V, 3 v,,,. Let 

T = {t,: k E NJ be a subsequence of S such that t, E V,. Let P be any subse- 

quence of T. Then P has an accumulation point p. Then p E n v,, hence p =x. 
This implies that the point x is a limit point of T. Hence T is a convergent 

subsequence of S. 0 

Lemma 3. Let f : X + Y be a closed map. Let (y,: n EN} be a sequence converging 
to y E Y with y, #y. Let Ix,: n EN) be a sequence with x, E f-‘(y,). Zf Bf-‘(y) 
(boundary off- ‘( )) y ts compact, then so is C = Ix,: n EN} U Bf-l(y). 

Proof. Let Z? be an open covering of C. Since Bf-‘(y) is compact, there exists a 

finite 3”c.F’ such that Bf-‘(y)c U 27’. Hence f-‘(y)cV= UF’Uint f-‘(y). 
Since f is closed, there exists an open nbd W of y such that f-‘(W) c I/. But, any 

x, E int f-‘(y), and there exists n EN such that f-‘(W) contains x, for m > n. 
Hence, {x m: m >, n} u Bf- ‘( y) c LJ 27’. This implies that C is a compact subset of 

x. 0 

We recall that a space is isocompact if every closed countably compact subset is 

compact. Also, we recall that a map f : X + Y is compact covering if each compact 

subset of Y is the image of some compact subset of X. 

Lemma 4. Let f : X + Y be a closed map. Zf (a) or (b) below holds, then f is 

compact covering. 
(a) X is normal, isocompact, 
(b) each Bf - ‘( y ) is Lindeltf. 

Proof. If (a) holds, by the same way as in [12, Corollary 1.21, we see that f is 

compact covering (indeed, every closed countably compact subset of Y is the 

closed image of a compact subset of X). If (b) holds, since f is closed, we can 

assume that every f-‘(y) is Lindelof. Let K be a compact subset of Y. Then it is 

easy to show that f-‘(K) is Lindelof, hence is normal and isocompact. Since 

f I f-‘(K) is closed, it is compact covering by (a), hence so is f. q 

Now, we give partial answers to the question in the Introduction. 

Theorem 5. Let f : X + Y be a closed map such that X has a point-countable 
k-network. Zf one of the following properties holds, then Y has a point-countable 
k-network. 

(a) X is a k-space, 
(b) each point of X is a G,-set, 
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(c) X is a normal, isocompact space, 
(d) each Bf- ‘( y ) is Lindeliif. 

Proof. Let (a) or (b) hold. We note that every compact subset of X is metric in 

view of [2, Theorem 3.11. Thus if (a) holds, then X is sequential. Thus (a) or (b) 

implies that each compact subset of Y is sequential compact by Lemma 2. Let (c) 

or (d) hold. Then each compact subset of Y is also sequentially compact by 

Lemma 4. Hence, in view of Lemma 1, it suffices to show that Y has a point-count- 

able wcs*-network. To show this, let 9 be a point-countable k-network for X. For 

each y E Y, choose x,, of-l(y), and let A = U{xy: y E Y}. Let 9* = {f(A n P>: 
P EL?}. Then 9* is a point-countable cover of Y. To show 9* is a wcs*-network, 

let S = (y,: n E N} be a sequence converging to a point y E Y, and U be a nbd of 

y. Choose x, ~f-i(y,J nA for each n EN. If (a) or (b) holds, by Lemma 2 there 

exists a convergent subsequence T of {x,: n E N} in f-‘(U). Thus there exists 

P ~9 such that P contains a subsequence of T and P cf-l(U). Hence, f(A n PI 
c U contains a subsequence of S. This shows that 9* is a wcs*-network. For (c) 

and (d), we note that g =f I fp’(S U (y}) is a closed map, and S U {y} is compact. 

Hence, if(c) or (d) holds, then Bg-‘(y) is compact as in the proof of [12, Theorem 

1.11. Thus C = {x,: n EN) U Bg-‘(y) is a compact subset of X by Lemma 3. Then 

C is metric, so there exists a convergent subsequence of (x,: n E N] in X. Then, as 

is seen above, 9* is a wcs*-network. Consequently, 9* is a point-countable 

k-network. 0 

Remark 6. (1) Every closed, and Lindelof image (i.e., every point-inverse is 

Lindelof) of a metric space (more generally, N-space) is an N-space by [7l, hence it 

has a point-countable cs-, cs*-, and closed k-network by [5,6]. But, 

(2) Every closed image of a locally compact metric space doesn’t have any 

point-countable cs-, cs*-, nor closed k-network. 

Indeed, let S,, be the quotient space obtained from the topological sum of w1 

convergent sequences by identifying all the limit points to a single point. Then SW1 

is the closed image of a locally compact metric space. But, S,, doesn’t have any 

point-countable cs-, cs*-, nor closed k-network by 120, Lemma 2.41. 

Next, let us consider some applications of Theorem 5. First, we give some 

definitions. 

Let X be a space. For each x EX, let T, be a collection of subsets of X such 

that any element of T, contains x. Following Arhangel’skii [l], the collection 

T, = LJ(T,: x EX} is a weak base for X if (a) and (b) below are satisfied. We call 

each element of T, a weak nbd of x. 

(a) For each A, B E T,, there exists C E T, such that C CA n B, 
(b) a subset U of X is open in X if and only if for each x E U, there exists 

A E T, such that A c U. 
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A space X is g-first countable [17] (=X is weakly first countable; or X satisfies 

the weak first axiom of countability, or briefly, the gf-axiom of countability [l]), if 

X has a weak base T, such that each T, is countable. 

Any first countable space or any symmetric space is g-first countable. Every 

g-first countable space X is sequential, and if X is moreover FrCchet, then X is 

first countable; see [l]. 

Lemma 7. (1) Every weak base for X is a cs-network. 

(2) Every point-countable weak base for X is a k-network. 

(3) Let X be -f t g trs countable. Then X has a point-countable cs-network if and 

only if it has a point-countable weak base. 

Proof. To prove (11, it suffices to show that for x EX and any sequence {x,: 

n E N} converging to x with X, ZX, any weak nbd B of x contains all but finitely 

many x,. Indeed, suppose not. Then there exists a subsequence S of IX,: n EN} 

such that S n B = (d. Thus, since S U Ix) is closed in X, S is closed in X, a 

contradiction. For (21, since X is g-first countable, for each x EX, let {Q,(X): 

n EN} be a weak nbd of x in X. To show that every compact subset C of X is 

sequentially compact, let S be an infinite sequence in C with is not closed in X. 

Then there exists x E S with Q,(x) n S # @. This suggests that S has a subse- 

quence converging to the point x. Hence every compact subset of X is sequentially 

compact. Thus (2) holds by (1) and Lemma 1. For (31, the “if” part holds by (11, so 

we prove the “only if” part. Let 9 be a point-countable cs-network for X which is 

closed under finite intersections, and for each x E X, let {Q,(x): n E N} be a weak 

nbd of x in X. Let 9, = {P ~9: Q,(x) c P for some n EN}. Then 9X is a weak 

nbd of x in X. To show this, let G be an open subset of X. Then there exists 

P •9~ with P c G. Otherwise, let {P ~9: x E P c G) = (P,(x): m EN}. Then 

Q,(X) c P,(x) for each n, m EN, so choose x,, E Q,(x) -P,(x). For n > m, let 

X = yk, where k = m + n(n - 1)/2. Then the sequence (y,: k EN} converges to 

t;L point x. Thus, there exists m, i EN such that {y,: k > i} U {x} c P,(x) c G. 

Take j > i with yj =x,, for some II > m. Then x,, E P,(x). This is a contradic- 

tion. If G CX satisfies that for each x E G there exists P ~9~ with P c G, then G 

is open in X. Hence T, = U ~7~ is a point-countable weak base for X. 0 

From Theorem 5 and Lemma 7(2), the following holds. 

Corollary 8. Let f : X + Y be a closed map such that X has a point-countable weak 

base. Then Y has a point-countable k-network. 

As a characterization of countably bi-quotient images of paracompact M-spaces 

(respectively M-spaces), Michael [14] introduced the notion of countably bi-k-spaces 

(respectively countably bi-quasi-k-spaces). For these definitions, see Section 4 in 
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[14]. Any first countable space or any locally compact space is a countably 

bi-k-space. The following lemma is due to [Sl. 

Lemma 9. Every countably bi-k-space with a point-countable k-network has a 

point-countable base. 

From Corollary 8 and Lemma 9, the following holds. 

Corollary 10. Let f : X + Y be an open and closed map. If X has a point-countable 

base, then so does Y. 

We note that every countably compact space with a point-countable k-network 

(and cs-network) is not metrizable; see [S, Example 9.11. But Proposition 11 below 

holds. We recall that a space is an M-space if and only if it is the inverse image of 

a metric space by a quasi-perfect map. A space is weakly sequential [19] if it is 

determined by the cover of all sequential compact subsets. Every sequential space 

is weakly sequential. 

Proposition 11. Let X be an M-space with a point-countable, wcs*-network (respec- 

tively k-network) 9. Then X is metrizable if and only if X is a weakly sequential space 

(respectively k-space). 

Proof. The “only if” part is clear, so we prove the “if’ part. Since X is an 

M-space, to show that X is metrizable, by [S, Corollary 4.21, it suffices to prove 

that for a countably compact subset K of X, if Kc U =X - {x}, then there exists 

a finite 9’ cY such that Kc tJ 9 c U. 

We show that the countably compact set K of X is sequentially compact. Let S 

be an infinite sequence in K. We can assume that S is not closed in X. Since X is 

weakly sequential, S n C is not closed in C for some sequentially compact subset 

C of X. Thus there exists a subsequence T of S in C converging to a point p E C. 

But T has an accumulation point q E K, so p = q, hence p E K. This shows that K 

is sequentially compact. Now, let pU = {P ~9’: P c U}. Since Z@ is a point-counta- 

ble wcs*-network for X, and K is sequentially compact, K is contained in a finite 

union of elements of gdu in view of the proof of [20, Proposition 1.2(l)]. 

For the parenthetic part, since X is a k-space, the open subset U of X is a 

k-space. But, since ~7 is a k-network for X, every compact subset of U is 

contained in a finite union of elements of pU. Thus U is determined by the 

collection of all finite unions of TU. Hence the countably compact set K is also 

contained in a finite union of elements of g’, by [S, Proposition 2.11. 0 

Theorem 12. Let f : X + Y be a closed map such that X has a point-countable 

k-network, and let Y be an M-space (respectively countably bi-quasi-k-space). If 

property (a), (b) or (c) in Theorem 5 holds, then Y is metrizable (respectively Y has a 

point-countable base). 
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Proof. In view of the proof of Theorem 5, we see that every closed countably 

compact subset of Y is sequentially compact. But, since Y is an M-space, Y is 

determined by a cover of closed countably compact subsets in view of [18, Lemma 

1.31. Then X is weaky sequential. Since Y has a point-countable k-network (hence 

wcs*-network) by Theorem 5, Y is metrizable by Proposition 11. 

For the parenthetic part, to see that any countably compact subset of Y is 

compact, let K be a countably compact subset of Y. Let (a) hold. Then X is 

sequential, because every compact subset of X is metrizable by Proposition 11 (or 

[2, Theorem 3.11). Thus Y is sequential by [3, 2.4.G]. Then the countably compact 

set K is closed in Y. Next, let (c) hold. Since Y is normal, K is countably compact 

by [18, Lemma 1.21. Thus, if (a) or Cc) holds, then (a) or (c) holds with respect to a 

closed subset f-‘(K) of X (for (a>, E = K), and f I f-‘(K) is a closed map with K 

countably compact. Thus K is metrizable by the first paragraph, hence K is 

compact. If (b) holds, since (b) holds with respect to a subset f-‘(K) of X, K is 

also metrizable, hence K is compact. Thus property (a), (b), or (cl implies that 

every countably compact subset of X is compact. Then the countably bi-quasi-k- 

space Y is bi-k in view of [14, Definition 1.21. While, Y has a point-countable 

k-network by Theorem 5. Thus Y has a point-countable base by Lemma 9. q 

Corollary 13. Let f : X + Y be a closed map such that X has a point-countable weak 

base. If Y is an M-space, then Y is metrizable. 

Finally, let us consider the quotient s-images of certain metric spaces, and the 

preservation of spaces with point-countable cs-, cs*-, closed k-networks, or weak 

bases under quotient finite-to-one maps or perfect maps. 

Remark 14. (1) Every quotient s-image of a metric (respectively locally compact 

metric) space has a point-countable k-network (respectively compact k-network), 

and every FrCchet space which is the quotient s-image of a locally separable metric 

space has a point-countable cs-, cs*-, and closed k-network; see [S]. But, 

(2) Every quotient finite-to-one image of a locally compact metric space doen’t 

have a point-countable cs-network, nor a point-countable weak base. 

Indeed, let X be the topological sum of a collection {I, S,: (Y E I}, where I is 

the closed unit interval, and each S, is a convergent sequence. Let Y be the space 

obtained from X by identifying the limit point of S, with CY E I for each CY E I. Let 

f : X + Y be the obvious map. Then Y is the quotient finite-to-one image of a 

locally compact metric space X under f, and Y is a paracompact space with a 

point-countable compact k-network. To show that Y has no point-countable 

cs-networks, suppose that Y has a point-countable cs-network. Since Y is g-first 

countable, Y has a point-countable weak base T, by Lemma 7(3). We note that 

the subspace I of Y has a countable base 9, and for any y E I and T E T, c T,, 

y E B c T for some B ~9%‘. Then it follows that Y has a u-discrete weak base, 

which is a cs-network by Lemma 7(l). Thus Y is an K-space by [lo, Theorem 51. Let 
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2 be the space obtained from Y by identifying all points of I to a single point. 
Then 2 is the perfect image of Y, hence 2 is an H-space by Remark 6(l). But, Z 
contains a closed subspace which is homeomorphic to S,,. This is a contradiction 
to Remark 6(2X 

Remark 15. (1) Spaces with a point-countable k-network are preserved under 
perfect maps by [8]. But, 

(2) Spaces with a point-countable, closed k-network (compact k-network, cs*- 
network, or weak base) are not necessarily preserved under perfect maps by the 
proof in Remark 14, and the fact that S,, has no point-countable weak bases. 
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