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Based on the notions of T. Banakh’s strict Pytkeev networks and A.V.
Arhangel’skǐı’s sensor families, strict Pytkeev networks with sensors are introduced 
in this paper. A family P of subsets of a topological space X is called a strict 
Pytkeev network with sensors (abbr. an sp-network) if, for each x ∈ U ∩ A with 
U open and A subset in X, there is a set P ∈ P such that x ∈ P ⊂ U and 
x ∈ P ∩A. In present paper, we discuss certain relationship and operations among 
spaces defined by special Pytkeev networks, study spaces with a point-countable 
sp-network and spaces with a σ-closure-preserving sp-network, and detect some 
applications of sp-networks in topological groups.
The following results are obtained: (1) Every sp-network is preserved by a continuous 
pseudo-open mapping. (2) Every k-space with a point-countable sp-network 
coincides with a continuous pseudo-open s-image of a metric space. (3) Every regular 
feebly compact space with a point-countable sp-network has a point-countable base. 
(4) A regular space has a countable sp-network if and only if it is separable and has 
a point-countable sp-network. (5) A topological space is stratifiable if and only if it 
is a regular space with a σ-closure-preserving sp-network. (6) A regular space with 
a σ-locally finite sp-network has a σ-discrete sp-network. (7) A topological group 
is metrizable if it has countable sp-character. (8) There is a non-Fréchet-Urysohn 
sequential topological group with a countable strict Pytkeev network, which give a 
negative answer to a question posed by A.V. Arhangel’skǐı [1].

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In 1983, E.G. Pytkeev [36] proved that every sequential space satisfies the following property, known 
actually as the Pytkeev property [33, Definition 0.2], which is stronger than countable tightness: a topological 
space X has the Pytkeev property if for each A ⊂ X and each x ∈ A \A, there exists a sequence {An}n∈N of 
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infinite subsets of A such that each neighborhood of x contains some An. B. Tsaban and L. Zdomskyy [38, 
Definition 5] strengthened this property as follows: a topological space X has the strong Pytkeev property
if for each x ∈ X, there exists a countable family P of subsets of X, such that for each neighborhood 
U of x and each A ⊂ X with x ∈ A \ A, there is a set P ∈ P such that P ⊂ U and P ∩ A is infinite. 
Clearly, the strong Pytkeev property implies countable cs∗-character [38, p. 8]. Meanwhile, in a study of 
Fréchet-Urysohn spaces, A.V. Arhangel’skǐı [1] introduced and discussed sensitive families of a space, in 
which a countably sensitive family is exactly the strong Pytkeev property. These lead people to research 
the relations among the strong Pytkeev property, countability and generalized metrizable properties.

In 2011, A.V. Arhangel’skǐı [2] further introduced sensor families of a topological space in a study of 
pseudo-open mappings. In 2015, the notions of Pytkeev networks and strict Pytkeev networks were intro-
duced and studied [6], in which a Pytkeev network is just a network and a sensitive family in the sense of 
A.V. Arhangel’skǐı [1]. T. Banakh [8, Proposition 1.8] proved that each countable (strict) Pytkeev network 
for a topological space is a k-network (resp. cs∗-network), and the converse is also true for a k-space (resp. 
Fréchet-Urysohn space). At the same time, the notions of cp-networks, ck-networks and cn-networks were 
introduced [18]. S.S. Gabriyelyan and J. Ka̧kol [18, Proposition 2.3] proved that each space with a countable 
cn-network at each point is of countable tightness. Various kinds of topological spaces have been defined by 
spaces with certain Pytkeev networks, which played an important role in generalized metric spaces, cardinal 
functions, function spaces, topological groups and topological vector spaces [2,6–8,17–20,38].

The following question was discussed in [18, p. 182].

Question 1.1. Under what circumstances can make some of the types of networks coincide?

Partial answers to this question were given by T. Banakh [6], S. Gabriyelyan and J. Ka̧kol [18], etc. They 
studied the relationship among countable families or σ-locally finite families with certain Pytkeev networks, 
k-networks and cs∗-networks. Recently, we further discussed the relationship among certain Pytkeev net-
works, strict Pytkeev networks, cn-networks and k-networks in a topological space, detect their operational 
properties, and raise some questions [32]. It is well known that for a regular space X, X has a σ-locally 
finite base (resp. network, k-network) if and only if it has a σ-discrete base [13, p. 282] (resp. network [23, 
Theorem 4.11], k-network [14, Theorem 4]). We have the following question.

Question 1.2. [32, Problem 4.9] Does every regular space with a σ-locally finite (strict) Pytkeev network 
have a σ-discrete (strict) Pytkeev network?

It is also known that every Fréchet-Urysohn regular space with a σ-closure-preserving k-network is strat-
ifiable [31, Theorem 3.4.3], and every normal k-space with a σ-closure-preserving k-network is paracompact 
[31, Theorem 3.4.11]. We have the following question.

Question 1.3. [32, Problem 4.14] Is a normal space with a σ-locally finite strict Pytkeev network paracom-
pact?

E.A. Michael [34, Theorem 11.4] proved that a regular space has a countable k-network (i.e., an ℵ0-space) 
if and only if it is a compact-covering continuous image of a separable metrizable space.

Question 1.4. [18, Question 6.8] Find a characterization of regular spaces with a countable strict Pytkeev 
network analogous to the characterization of ℵ0-spaces given by E.A. Michael.

On the other hand, A.V. Arhangel’skǐı discussed some convergence concepts, components of first-
countability and various kinds of pseudo-open mappings, and introduced the notions of a sensitive at a 
point family and a sensor at a set family [1,2]. A.V. Arhangel’skǐı proved that every pseudocompact regular 
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space has a point-countable base if it is a continuous pseudo-open s-image of a metric space [2, Theo-
rem 2.13]. Does every pseudocompact regular space have a point-countable base if it is a quotient s-image 
of a metric space [29, Question 2.2.12]? Since a quotient s-image of a metric space coincides with a sequential 
space with a point-countable cs∗-network [31, Corollary 2.7.5], the following question is interesting.

Question 1.5. Does every pseudocompact regular sequential space with a point-countable cs∗-network have 
a point-countable base?

Spaces defined by special Pytkeev networks can be applied to topological spaces with certain algebra 
structures. T. Banakh and L. Zdomskyy proved that any sequential topological group G with countable 
cs∗-character is a stratifiable space with a σ-locally finite k-network, and any such G either is metrizable 
or contains an open submetrizable kω-subgroup [9, Theorem 1]. A.V. Arhangel’skǐı pointed out that a 
Fréchet-Urysohn topological group need not be metrizable, and proved that if a topological group G is a 
Fréchet-Urysohn space and has countably sensitive at some point, then G is metrizable [1, Theorem 4.9]. 
Recently, T. Banakh and A. Leiderman proved that a locally narrow topological group has the strong 
Pytkeev property if and only if it is metrizable [8, Theorem 7]. The following question is posed.

Question 1.6. [1, p. 106] Is every countably-sensitive topological group metrizable?

In this paper, special Pytkeev networks are studied around the above questions. We will see that the 
concepts of strict Pytkeev networks and sensor families give us an inspiration for our research. In order 
to discuss generalized metrizable spaces with various base-like properties, and explore their applications 
in topological groups, we introduce and study a complex notion which is called a strict Pytkeev network 
with sensors (abbr. an sp-network), based on the notions of T. Banakh’s strict Pytkeev networks and 
A.V. Arhangel’skǐı’s sensor families. Thus, by sp-networks, we obtain partial answers to Questions 1.1–1.5, 
and a negative answer to Question 1.6. The paper is organized as follows. In Section 2, we introduce some 
known notions to be discussed in this paper, and describe some basic relation among spaces defined by 
these notions. In Section 3, the notion of sp-networks is defined, and we obtain certain relationship among 
the notions of sp-networks, strict Pytkeev networks and k-networks, consider some standard operations in 
the spaces with certain sp-networks, give a special product property for spaces with countable sp-character, 
and prove that every sp-network is preserved by a continuous pseudo-open mapping. In Section 4, we study 
spaces with a point-countable sp-network, prove that a k-space with a point-countable sp-network if and 
only if it is a continuous pseudo-open s-image of a metrizable space, and each regular feebly compact space 
with a point-countable sp-network has a point-countable base, which give partial answers to Questions 1.4
and 1.5. In Section 5, we discuss spaces with a σ-closure-preserving sp-network, prove that a topological 
space is a stratifiable space if and only if it is a regular space with a σ-closure-preserving sp-network, and 
a regular space with a σ-locally finite sp-network has a σ-discrete sp-network, which give partial answers 
to Questions 1.2 and 1.3. In Section 6, we detect some applications of sp-networks in topological groups, 
prove that a topological group is metrizable if it has countable sp-character, and give a negative answer to 
Question 1.6.

2. Networks and countable tightness

In this section, we introduce the necessary notation, terminology, and describe some basic relation among 
spaces defined by these notions. Throughout this paper, all topological spaces are assumed to be Hausdorff, 
mappings are continuous and onto, unless explicitly stated otherwise. The sets of real numbers, rational 
numbers and positive integers are denoted by R, Q and N, respectively. The first infinite ordinal and the first 
uncountable ordinal are denoted by ω and ω1, respectively. For a set A, denote A<ω = {B ⊂ A : B is finite}.
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Definition 2.1. Let P be a family of subsets of a topological space X.
(1) P is a network [13, p. 127] for X, if for any neighborhood U of a point x ∈ X, there exists a set 

P ∈ P such that x ∈ P ⊂ U .
(2) P is a k-network [23, Definition 11.1] for X, if whenever K is a compact subset of an open set U in 

X, there exists a finite subfamily F of P such that K ⊂
⋃

F ⊂ U .
(3) P is a cs∗-network [21, Definition 3] (resp. wcs∗-network [30, p. 79]) for X, if for every sequence 

{xn}n∈N converging to a point x ∈ U with U open in X, there exists a set P ∈ P such that some subsequence 
{xni

}i∈N of {xn}n∈N is eventually in P and x ∈ P ⊂ U (resp. P ⊂ U).
(4) P is a Pytkeev network (resp. strict Pytkeev network) [6, Definition 1.1] for X, if P is a network for 

X, and for each neighborhood U of a point x in X and each subset A of X accumulating at x, there exists 
a set P ∈ P such that P ∩A is infinite and P ⊂ U (resp. x ∈ P ⊂ U).

For a fixed point x ∈ X, P is called a network (resp. cs∗-network (wcs∗-network), Pytkeev network (strict 
Pytkeev network)) of the point x in X, if the family P satisfies the above mentioned conditions (1) (resp. 
(3) or (4)) at x.

(5) The space X is of countable cs∗-character [9, p. 26] (resp. the strong Pytkeev property [38, Definition 5]
or countable Pytkeev character) if it has a countable cs∗-network (resp. Pytkeev network) at each point 
x ∈ X.

Remark 2.2. (1) In [6, p. 152], it was said that a subset A of a topological space X accumulates at a point
x ∈ X if each neighborhood of x contains infinitely many points of the set A. It is obvious that for a T1
space X a point x ∈ X is an accumulation point of a set A ⊂ X if and only if x ∈ A \ {x}.

(2) In [1, p. 104], the notion of sensitive families was introduced. Let X be a T1 topological space, and 
x be a point of X. A family S of subsets of X is called sensitive at x (or just closure-sensitive at x) if, 
for each neighborhood U of x and for each subset A of X \ {x} such that x ∈ A, there exists a set P ∈ S

satisfying the following conditions: P ⊂ U and P ∩A is infinite. It is clear that S is a Pytkeev network of x
if and only if it is a network and a sensitive family at x. Thus, a space X has the strong Pytkeev property 
if and only if X has a network which is countably sensitive at each point of X.

Fig. 1. The relationship among spaces with certain networks.

Fig. 1 is some basic relationship among spaces with certain networks to be discussed in this paper [6,18].
Spaces defined by a countable special network are a matter of continuing concern. Let X be a regular 

space. X is called a cosmic space [34, p. 993] if it has a countable network; X is called an ℵ0-space [34, 
Definition 1.2] if it has a countable k-network; and X is called a P0-space [6, Definition 1.2] if it has a 
countable Pytkeev network. It is easy to check that every P0-space is an ℵ0-space, and every ℵ0-space is a 
cosmic space. Some properties of the spaces with a countable special network are the source of our further 
research on the spaces with a point-countable special network or a σ-locally finite special network. The 
further relationship among spaces with certain networks involves weak first-countability.

Definition 2.3. Let X be a topological space.
(1) A subset A of X is k-closed in X if A ∩K is relatively closed in K for each compact subset K of X. 

The space X is a k-space [13, p. 152] if every k-closed subset of X is closed.
(2) A subset A of X is sequentially closed in X if S is a sequence in A converging to a point x ∈ X, then 

x ∈ A. The space X is a sequential space [13, p. 53] if every sequentially closed subset of X is closed.
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(3) The space X is a Fréchet-Urysohn space [13, p. 53] if, for each A ⊂ X and each x ∈ A, there is a 
sequence in A converging to the point x in X.

(4) The space X is of countable tightness [35, Proposition 8.5] if, for each A ⊂ X and each x ∈ A, there 
is a countable subset C ⊂ A such that x ∈ C.

Fig. 2. The relationship among certain countability.

Fig. 2 is some basic relationship among certain countability to be discussed in this paper [18].
The following are known.

Lemma 2.4. (1) Every k-network in a k-space is a Pytkeev network [6, Proposition 1.7].
(2) Every wcs∗-network in a sequential space is a Pytkeev network [32, Theorem 3.5].

The above lemma shows that weak first-countability plays an important role in the study of spaces with 
special Pytkeev networks. On the other hand, there are some interesting results from the spaces with a 
point-countable special Pytkeev network. A family P of subsets of a space X is point-countable [11, p. 350]
if the family {P ∈ P : x ∈ P} is countable for each x ∈ X. A space X is called a meta-Lindelöf space [11, 
p. 370] if every open cover of X has a point-countable open refinement.

Lemma 2.5. (1) Every k-space with a point-countable k-network is a sequential space [25, Corollary 3.4].
(2) Every first-countable space with a point-countable cs∗-network has a point-countable base [31, Corol-

lary 2.7.18].
(3) Every point-countable Pytkeev network for a space is a k-network [32, Theorem 3.1].
(4) Every space with a point-countable strict Pytkeev network is a hereditarily meta-Lindelöf space [32, 

Corollary 4.3].

3. Strict Pytkeev networks with sensors

In this section, we introduce and study a complex notion which is called a strict Pytkeev network with 
sensors (abbr. an sp-network), based on the notions of T. Banakh’s strict Pytkeev networks and A.V. 
Arhangel’skǐı’s sensor families.

A family S of subsets of a topological space X is said to be a sensor [2, p. 217] at a set H ⊂ X if, for 
each open neighborhood O(H) of H and each set A in X such that H ∩ A �= ∅, there exists a set P ∈ S

satisfying the following conditions: P ⊂ O(H) and H ∩A ∩ P �= ∅. Thus, for a point x ∈ X, S is a sensor 
at x if, for each neighborhood U of x and each set A with x ∈ A in X, there exists a set P ∈ S such that 
P ⊂ U and x ∈ A ∩ P . This motivates us to propose the following concept.

Definition 3.1. A family P of subsets of a topological space X is called a strict Pytkeev network with sensors
(abbr. an sp-network) for X if, for each x ∈ U ∩ A with U open and A subset in X, there is a set P ∈ P

such that x ∈ P ⊂ U and x ∈ P ∩A.
For a fixed point x ∈ X, P is called an sp-network of the point x in X if the family P satisfies the above 

mentioned conditions at x. The space X is of countable sp-character at x if it has a countable sp-network 
at the point x ∈ X.

A topological space X is said to be a stric P0-space if X is regular and has a countable sp-network.
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Remark 3.2. Maybe we can call the term of Definition 3.1 a “strict sensor”, but we would prefer to call it a 
“strict Pytkeev network with sensors”. The term “strict Pytkeev network with sensors” is too long, and we 
think about giving it an abbreviation. It is natural that the phrase “strict Pytkeev network” is abbreviated to 
“sp-network”, and it may be considered that the phrase “strict Pytkeev network with sensors” is abbreviated 
to “sps-network” or “ssp-network”. For simplicity, we use the word “sp-network” to represent the concept 
of “strict Pytkeev network with sensors” in this paper. The notion of cp-networks was introduced in [18, 
Definition 1.1]. A family P of subsets of a space X is called a cp-network at a point x ∈ X if either x is an 
isolated point of X and {x} ∈ P, or for each subset A of X with x ∈ A \A and each neighborhood U of x
there exists a set P ∈ P such that P ∩A is infinite and x ∈ P ⊂ U . It is easy to check that for a T1 space 
X a family P of subsets of X is a strict Pytkeev network if and only if it is a cp-network for X. Thus, the 
concept of a strict Pytkeev network has a similar abbreviation.

It is clear that every base for a topological space is an sp-network; every sp-network for a topological 
space is a strict Pytkeev network (i.e., a cp-network), and the converse is also true for a Fréchet-Urysohn 
space, which extends the following result: every cs∗-network is a strict Pytkeev network in a Fréchet-Urysohn 
space [8, Proposition 1.8].

Lemma 3.3. Every cs∗-network in a Fréchet-Urysohn space is an sp-network.

Proof. Let X be a Fréchet-Urysohn space, and P be a cs∗-network for X. Given a point x ∈ O ∩ A with 
O open and A subset in the space X, there exists a sequence {xn}n∈N in A converging to the point x in 
X, thus there is a set P ∈ P such that some subsequence {xni

}i∈N of {xn}n∈N is eventually in P and 
x ∈ P ⊂ U . Then x ∈ P ∩A. Hence, the family P is an sp-network for X. �

A topological space X has countable closed pseudocharacter [13, p. 135] or regular Gδ [28, p. 188] at a 
point x ∈ X if {x} =

⋂
n∈ω Un for some sequence {Un}n∈ω of closed neighborhoods of x. A space X is 

discretely sequential at a point x ∈ X if for any discrete subspace D ⊂ X \ {x} with D = {x} ∪D there is 
a sequence of points {xn}n∈ω ⊂ D that converges to x.

Theorem 3.4. Assume that a T1-space X has countable closed pseudocharacter and countable sp-networks at 
a point x ∈ X. The space X is Fréchet-Uryshon at x if and only if X is discretely sequential at x.

Proof. The “only if” part is trivial. To prove the “if” part, assume that the space X is discretely sequential 
at x. Let P be a countable sp-network at x and {Wn}n∈ω be a decreasing sequence of closed neighborhoods 
of x such that {x} =

⋂
n∈ω Wn. To prove that X is Fréchet-Uryshon at x, take any subset A ⊂ X with 

x ∈ A \ A. Consider the subfamily P ′ = {P ∈ P : x ∈ P ∩A} and write it as P ′ = {Pk}k∈ω. For every 
k ∈ ω choose a point ak ∈ Wk∩Pk ∩A. If the set D = {ak}k∈ω is closed in X, then X \D is a neighborhood 
of x and we can find a set P ∈ P such that x ∈ P ∩A and P ⊂ X \D. It follows that P ∈ P ′ and hence 
P = Pk for some k ∈ ω. Then ak ∈ Pk ∩D ⊂ (X \D) ∩D = ∅, which is a contradiction showing that the 
set D is not closed in X.

We claim that the point x is a unique accumulation point of D. Indeed, assuming that D has an ac-
cumulation point y �= x, we can find n ∈ ω such that y /∈ Wn and conclude that X \ Wn is an open 
neighborhood of y such that D ∩ (X \ Wn) ⊂ {ai}i<n which means that y is not an accumulation point 
of D. This contradiction shows that D is a discrete subspace of X \ {x} and D = {x} ∪D. By the discrete 
sequentiality of X, there exists a sequence {xn}n∈ω ⊂ D ⊂ A that converges to x. �
Corollary 3.5. If a space X has countable closed pseudocharacter and countable sp-networks at each point, 
then each k-subspace of X is Fréchet-Uryshon.
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Proof. Let Y be a k-subspace of the space X and a point y ∈ Y . Since each point of Y has countable closed 
pseudocharacter, the subspace Y is sequential. If D is a discrete subspace of Y \ {y} with clY D = {y} ∪D, 
then D is not sequentially closed in Y , thus there is a sequence of points {xn}n∈ω ⊂ D that converges to y. 
This shows that each point in Y is discretely sequential. By Theorem 3.4, Y is Fréchet-Uryshon. �

Not every regular space with a countable sp-network is a k-space.

Example 3.6. There exists a countable regular space X with a unique non-isolated point such that X has a 
countable sp-network but contains no infinite compact subsets.

Proof. Let 2≤ω = 2ω ∪ 2<ω where 2<ω =
⋃

n∈ω 2n is the family of finite binary sequences.
For a sequence s ∈ 2n by |s| = n we denote its length. Let also ↑ s := {t ∈ 2≤ω : |t| ≥ |s| and t � |s| = s}. 

Endow 2≤ω with the compact second-countable topology generated by the base {↑ s : s ∈ 2<ω}. Let 
U be the family of open subsets U ⊂ 2≤ω such that 2ω \ U is finite. The family U induces the filter 
F = {U ∩ 2<ω : U ∈ U } on the countable set 2<ω.

Take any point ∞ /∈ 2<ω and consider the space X = {∞} ∪ 2<ω endowed with the topology as follows:

τ = {U ⊂ X : ∞ ∈ U ⇒ U ∩ 2<ω ∈ F}.

It can be shown that X has the required properties: it contains no infinite compact sets and the family

P = {{s} : s ∈ 2<ω} ∪ {{∞}∪ ↑ s \ 2ω : s ∈ 2<ω}

is a countable sp-network in X. �
The condition “cs∗-network” in Lemma 3.3 cannot be replaced by “Pytkeev network”, see Example 4.6. 

The following example shows that the condition “Fréchet-Urysohn space” in Lemma 3.3 cannot be weakened 
to “sequential space”.

Example 3.7. The Arens space S2: a regular sequential space with a countable strict Pytkeev network which 
is not an sp-network.

Proof. Let X = {x} ∪{xn : n ∈ N} ∪{xn,m : n, m ∈ N}, where every xn, xn,m and x are different from each 
other. The set X endowed with the following topology is called the Arens space [13, Example 1.6.19] and 
denoted briefly as S2: each xn,m is isolated; a basic neighborhood of xn has the form {xn} ∪{xn,m : m > k}
for some k ∈ N; a basic neighborhood of x has the form {x} ∪

⋃
n≥k Vn for some k ∈ N, where each Vn is a 

neighborhood of xn. It is easy to see that the space X is a non-Fréchet-Urysohn, regular sequential space 
with a countable cs∗-network [31, Example 1.8.6]. By Lemma 2.4(2), X has a countable Pytkeev network, 
and it has a countable strict Pytkeev network [6, p. 152].

Since every countable space has countable closed pseudocharacter at each point, by Corollary 3.5, the 
space X does not have countable character at the point x. Next, we will directly show that the space X does 
not have a countable sp-network at the point x. Otherwise, we can assume that F is a countable sp-network 
at x. Let X0 = {xn,m : n, m ∈ N}. Put F ′ = {F ∈ F : x ∈ F ∩X0}. If F ∈ F ′, the set {n ∈ N : xn,m ∈
F for some m ∈ N} is infinite. Thus there exists a subset C of X0 such that |C ∩ {xn,m : m ∈ N}| ≤ 1 for 
each n ∈ N and |C ∩ F | = 1 for each F ∈ F ′. Since x ∈ (X \ C) ∩X0 and C is closed in X, there is a set 
F ∈ F such that x ∈ F ⊂ X \ C and x ∈ F ∩X0, which is a contradiction. Therefore, X does not have a 
countable sp-network at the point x, and X does not have the strong Pytkeev property. �
Example 3.8. There exists a compact space possessing an sp-network which is not a k-network.
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Proof. Let X = [0, ω1] endowed with the ordered topology. Then X is a compact space. Let L be the set 
of all limit ordinals in X. For each α < ω1 and each n < ω, let Pα,n = ({β + n : β ∈ L} ∩ (α, ω1]) ∪ {ω1}. 
Clearly, (α, ω1] =

⋃
n<ω Pα,n. For each x ∈ X, define a family Px of subsets of X as follows: if x �= ω1, let 

Px be a countable local base of x with 
⋃

Px ⊂ [0, x]; if x = ω1, let Px = {Pα,n : α < ω1, n < ω}. Put 
P =

⋃
x∈X Px. Since X is a compact space which is not covered by any finitely many elements of P, the 

family P is not a k-network for X. We will prove that P is an sp-network for X. Given a point x ∈ U ∩A

with U open and A subset in X, without loss of generality, we may assume that x = ω1 ∈ A \A, there is an 
ordinal α < ω1 such that (α, ω1] ⊂ U . Then A ∩ (α, ω1] is an uncountable set because x is an accumulation 
point of the set A. By A ∩ (α, ω1] =

⋃
n<ω A ∩ Pα,n, there exists n < ω such that A ∩ Pα,n is uncountable. 

Then x ∈ A ∩ Pα,n, and x ∈ Pα,n ⊂ U . Therefore, P is an sp-network for X. �
Next, we consider some standard operations in the topological spaces with certain sp-networks. It is 

obvious that (1) if P is an sp-network for a space X and Y is a subspace of X, then P|Y = {P ∩Y : P ∈ P}
is an sp-network for Y ; (2) if {Xα}α∈Γ is a family of spaces, and Pα is an sp-network for Xα for each α ∈ Γ, 
then the family 

⋃
α∈Γ Pα is an sp-network for the topological sum 

⊕
α∈Γ Xα.

Theorem 3.9. Let x, y be non-isolated points of spaces X, Y , respectively. If the product X×Y has a countable 
sp-network at the point (x, y) ∈ X × Y , then X × Y is first-countable at (x, y).

Proof. Assume that the space X × Y has a countable sp-network at (x, y). The first-countability of X × Y

at (x, y) will be proved as soon as we proved the first-countability of X and Y at x and y, respectively.
By symmetry, it suffices to present a proof of the first-countability of X at x. Taking into account that 

the spaces X, Y can be identified with the subspaces {x} × Y and X × {y} of X × Y , we conclude that X
and Y have countable sp-networks at x and y, respectively. In particular, the space Y is countably tight 
at y, which allows to find a sequence of points {yn}n∈ω ⊂ Y \ {y} accumulating at y. Since the space Y is 
Hausdorff, for every n ∈ ω we can choose a closed neighborhood Wn ⊂ Y of yn such that y /∈ Wn.

Let P be a countable sp-network at the point (x, y) of the space X×Y . Replacing P by a larger family, 
we can assume that the family P is closed under finite unions. Let prX : X × Y → X denote the natural 
projection onto the first factor. The first-countability of X at x will be established as soon as we checked 
that for every neighborhood Ox ⊂ X of x there exists a set P ∈ P such that prX(P ) ⊂ Ox and prX(P ) is 
a neighborhood of x.

Given any neighborhood Ox ⊂ X of x, consider the subfamily P ′ = {P ∈ P : P ⊂ Ox × Y }, which can 
be written as P ′ = {Pk}k∈ω. We claim that for some k ∈ ω the projection prX(Pk) is a neighborhood of x.

To derive a contradiction, assume that for every k ∈ ω the set prX(Pk) is not a neighborhood of x. Since 
the family P ′ is closed under finite unions, for every n ∈ ω the set prX(

⋃
k≤n Pk) is not a neighborhood 

of x and hence 
⋃

k≤n Pk is not a neighborhood of the point (x, yn), which implies that the point (x, yn) is 
contained in the closure of the set (X ×Wn) \

⋃
k≤n Pk.

Since the point (x, y) is an accumulation point of the sequence {(x, yn)}n∈ω, the set

A =
⋃

n∈ω

((X ×Wn) \
⋃

k≤n

Pk)

contains (x, y) in its closure. Since P is an sp-network at (x, y), there exists a set P ∈ P such that 
P ⊂ Ox × Y and (x, y) ∈ P ∩A. It follows that P ∈ P ′ and hence P = Pi for some i ∈ ω.

Then

P ∩A =
⋃

(Pi ∩ (X ×Wn) \
⋃

Pk) ⊂
⋃

X ×Wn
n∈ω k≤n n<i
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and hence (x, y) cannot belong to the closure of P ∩ A as it does not belong to the closure of the set ⋃
n<i X ×Wn. �
Recall some concepts relevant to mappings. A mapping f : X → Y between topological spaces is called 

a quotient mapping [13, p. 91] if, for each U ⊂ Y with f−1(U) open in X, U is open in Y . A mapping 
f : X → Y is pseudo-open [1, p. 108] if for each f−1(y) ⊂ V with V open in X, f(V ) is a neighborhood of y
in Y . Obviously, every closed mapping or open mapping is a pseudo-open mapping, and every pseudo-open 
mapping is a quotient mapping.

Theorem 3.10. Every sp-network is preserved by a pseudo-open mapping.

Proof. Let P be an sp-network for a space X and f : X → Y be a pseudo-open mapping. Given a point 
y ∈ O ∩ A with O open and A subset in the space Y , then f−1(y) ∩ f−1(A) �= ∅. Otherwise, we have 
f−1(y) ⊂ X \ f−1(A). Because f is a pseudo-open mapping, y ∈ [f(X \ f−1(A))]◦ ⊂ Y \ A, which is a 
contradiction. So there exist a point x ∈ f−1(y) ∩ f−1(A) and a neighborhood V of x such that f(V ) ⊂ O. 
Since P is an sp-network for X, there exists a set P ∈ P such that x ∈ P ⊂ V and x ∈ P ∩ f−1(A). So 
y = f(x) ∈ f(P ∩ f−1(A)) ⊂ f(P ) ∩A and y ∈ f(P ) ⊂ O. Hence, the family Q = {f(P ) : P ∈ P} is an 
sp-network for Y . �

sp-Networks may not be preserved by quotient mappings, see Example 4.7. The following corollary is 
obvious.

Corollary 3.11. Spaces with a countable sp-network are preserved by pseudo-open mappings.

4. Spaces with point-countable sp-networks

In this section, we mainly discuss some properties of spaces with a point-countable sp-network, and prove 
that every regular feebly compact space with a point-countable sp-network has a point-countable base.

Let X, Y be topological spaces. A mapping f : X → Y is called an s-mapping [25, p. 304] if every f−1(y)
is a separable subset of X. It is well known that some spaces with point-countable special networks can 
be characterized by certain s-images of metric spaces [31]. For example, a space with a point-countable 
base if and only if it is an open s-image of a metric space [31, Theorem 2.7.17]; a sequential space with a 
point-countable cs∗-network if and only if it is a quotient s-image of a metric space [31, Corollary 2.7.5]. 
The following theorem establishes a relation between spaces with point-countable sp-networks and metric 
spaces by pseudo-open s-mappings, which gives a partial answer to Question 1.4.

Lemma 4.1. [28, Corollary 2.13] Suppose that X is a k-space with a point-countable k-network. Then X is 
a Fréchet-Urysohn space if and only if X contains no closed copy of S2.

Theorem 4.2. The following conditions are equivalent for a topological space X.
(1) X is a k-space with a point-countable sp-network.
(2) X is a Fréchet-Urysohn space with a point-countable cs∗-network.
(3) X is a pseudo-open s-image of a metrizable space.

Proof. It is known that (2) is equivalent to (3) [31, Corollary 2.7.5]. (2) implies (1) by Lemma 3.3. Next, we 
prove that (1) implies (2). Let X be a k-space with a point-countable sp-network. Obviously, X has a point-
countable cs∗-network. By Example 3.7, X contains no closed copy of S2. It follows from Lemmas 2.5(3) 
and 4.1 that X is a Fréchet-Urysohn space. �
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Let P be a cover of a topological space X. The space X is determined by the cover P [25, p. 303], if 
U ⊂ X is open (closed) in X if and only if U ∩P is relatively open (relatively closed) in P for each P ∈ P. 
It is known that if P is a cover of X, then the space X is determined by P if and only if the obvious 
mapping f :

⊕
P → X is a quotient mapping, where 

⊕
denotes the topological sum [25, Lemma 1.8]. 

A topological space X is called a kω-space [16, p. 111] if it is determined by a countable cover of compact 
subsets of X. It is clear that every kω-space is a k-space.

The following example shows that spaces with a countable sp-network are not preserved by finite Ty-
chonoff products.

Example 4.3. The sequential fan Sω has the following properties:
(1) Sω is a regular Fréchet-Urysohn, kω-and ℵ0-space.
(2) Sω has a countable sp-network.
(3) (Sω)2 does not have a point-countable sp-network.

Proof. A topological space X is called the sequential fan [3, p. 316], which is denoted briefly as Sω, if X
is the quotient space by identifying all the limit points of ω many non-trivial convergent sequences. Since 
the space Sω is a closed image of a separable locally compact metrizable space, it is easy to check that Sω

is a regular Fréchet-Urysohn, kω-and ℵ0-space [31, Example 1.8.7]. By Corollary 3.11, Sω has a countable 
sp-network.

Since Sω is not first-countable, by Theorem 3.9, (Sω)2 does not have a point-countable sp-network. �
By Theorem 3.9 and Lemma 2.5(2), the following is obtained.

Corollary 4.4. A topological space X has a point-countable base if and only if X2 has a point-countable 
sp-network.

A mapping f : X → Y is called countable-to-one [25, p. 317] (resp. finite-to-one [11, p. 388]) if every 
f−1(y) is a countable (resp. finite) subset of X.

Theorem 4.5. Every space with a point-countable sp-network is preserved by a countable-to-one pseudo-open 
mapping.

Proof. Let f : X → Y be a countable-to-one pseudo-open mapping, and P be a point-countable sp-network 
for the space X. By Theorem 3.10, {f(P ) : P ∈ P} is an sp-network for the space Y . Because f is a 
countable-to-one mapping, {f(P ) : P ∈ P} is a point-countable sp-network for Y . �
Example 4.6. Spaces with a point-countable sp-network are not preserved by closed mappings.

Proof. Let Sω1 be the quotient space obtained by identifying all the limit points of the topological sum 
of ω1 many non-trivial convergent sequences. Obviously, the space Sω1 is a closed image of a metrizable 
space. Thus, Sω1 is a Fréchet-Urysohn space with a point-countable k-network [31, Theorem 2.5.8]. By 
Lemma 2.4(1), Sω1 has a point-countable Pytkeev network. It is clear that Sω1 is a closed image of a 
space with a point-countable sp-network. It follows from [31, Example 1.8.7] that Sω1 does not have a 
point-countable cs∗-network, thus it does not have a point-countable sp-network (see Fig. 1). �
Example 4.7. Spaces with a point-countable sp-network are not preserved by finite-to-one quotient mappings.

Proof. Let

I = [0, 1], S1 = {1/n : n ∈ N} ∪ {0}, X = I× S1, and Y = I× (S1 \ {0}).
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Define a topology for X as follows [25, Example 9.3]: Y is the Euclidean subspace of X; a basic neighborhood 
of a point (t, 0) ∈ X has the form

{(t, 0)} ∪
⋃

{V (t, k) : k ≥ n}, n ∈ N,

where each V (t, k) is an open neighborhood of the point (t, 1/k) in the subspace I × {1/k}.
Let

M = (
⊕

{I× {1/n} : n ∈ N}) ⊕ (
⊕

{{t} × S1 : t ∈ I}).

Then M is a locally compact metrizable space, thus M has a point-countable sp-network. Let f : M → X be 
the obvious mapping. Since X is determined by the point-finite cover {I ×{1/n} : n ∈ N} 

⋃
{{t} ×S1 : t ∈ I}, 

f is a finite-to-one quotient mapping [25, Lemma 1.8].
Obviously, the space X is a separable regular space. Since I × {0} is an uncountable discrete closed 

subspace of X, X is not a Lindelöf space, and hence X is not a meta-Lindelöf space. By Lemma 2.5(4), 
X does not have a point-countable strict Pytkeev network. Hence, X does not have a point-countable 
sp-network. �

Let X be a topological space. A family P of subset of X is called locally finite [11, p. 349] if for each 
point x in X there is a neighborhood Ox of the point x such that the set Ox meets at most finitely many 
elements of the family P. A topological space X is called feebly compact [37, p. 482] if every locally finite 
family of open sets of X is finite; X is called pseudocompact if every real-valued continuous function on X
is bounded. It is well known that every countably compact space is feebly compact, every feebly compact 
space is pseudocompact, and every completely regular pseudocompact space is feebly compact. By [32, 
Corollary 3.4], each countably compact space with a point-countable Pytkeev network has a point-countable 
base. The following result gives a partial answer to Question 1.5.

Lemma 4.8. Let X be a regular feebly compact space and x ∈ X. If X has a countable sp-network at the 
point x, then it is first-countable at x.

Proof. Let P be a countable sp-network at the point x. Put

B = {
⋃

P ′ : P ′ ∈ [P]<ω}.

Then B is countable. Next we will show that {B ∈ B : x ∈ B◦} is a local base of the point x.
Take any open neighborhood V of x. Let Q = {P ⊂ V : P ∈ P}, which can be written as Q = {Qn}n∈N. 

For each n ∈ N, let Bn =
⋃
{Qi : i ≤ n}. Then x ∈ Qn ⊂ Bn ⊂ V and Bn ∈ B. Put An = X \ Bn. Then 

An is open in X. Let

S = {s ∈ X : there exists a sequence Ws = {Wi}i∈N of open subsets of X such

that Ws is not locally finite at the point s, Wi ⊂ Ai and s /∈ Wi for each i ∈ N}.

Claim 1. If x ∈
⋂

n∈N
An, then x ∈ S.

Let O be an open neighborhood of the point x. There exists an open neighborhood G of x such that 
G ⊂ O. Since X has a countable sp-network at x, X has countable tightness at x [18, Proposition 2.3]. 
For each n ∈ N, by x ∈ An, there is a countable subset Dn ⊂ An such that x ∈ Dn. Since x /∈ An, Dn is 
infinite. Denote Dn = {dn,i : i ∈ N}. Since An is open, we can select a sequence {Wn,i}i∈N of open subsets 
of X such that x /∈ Wn,i and dn,i ∈ Wn,i ⊂ An. Then x ∈

⋃
Wn,i, and we can choose i(n) ∈ N such that 
i∈N
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G ∩Wn,i(n) �= ∅. Because X is a feebly compact space, there exists s ∈ X such that {G ∩Wn,i(n)}n∈N is 
not locally finite at the point s. Thus s ∈ S ∩G ⊂ S ∩O. Therefore, x ∈ S.

Claim 2. x ∈ B◦
n for some n ∈ N.

Suppose that the claim is not hold, x ∈
⋂

n∈N
An. By Claim 1, x ∈ S. Since X is of countable tightness at 

the point x, there exists a subset {sn : n ∈ N} ⊂ S such that x ∈ {sn : n ∈ N}. For each n ∈ N, there exists 
a sequence Hn = {Hn,i}i∈N of open subsets of X such that Hn is not locally finite at the point sn, each 
Hn,i ⊂ Ai and x /∈ Hn,i. Let H =

⋃
{Hn,i : n, i ∈ N and n ≤ i}. If U is an open neighborhood of the point x

in X, there exists sn ∈ U . Since the family Hn is not locally finite at the point sn, there is k ≥ n such that 
U ∩Hn,k �= ∅, and U ∩H �= ∅. This shows that x ∈ H. Because P is an sp-network at x, there exists i ∈ N

such that x ∈ Qi ∩H. Since Bi ∩Hn,j ⊂ Bi ∩ Ai = ∅ for each j ≥ i, x ∈ Bi ∩H ⊂
⋃
{Hn,j : n ≤ j < i}, 

which is a contradiction.
It shows that {B ∈ B : x ∈ B◦} is a countable local base of the point x. �

Corollary 4.9. Let X be a regular feebly compact space. If X has a point-countable sp-network, then it has 
a point-countable base.

Proof. Since X has a point-countable sp-network, by Theorem 4.8, X is a first-countable space. Hence, by 
Lemma 2.5(2), X has a point-countable base. �

We have the following corollary by Theorems 4.2 and Corollary 4.9.

Corollary 4.10. [2] If f : X → Y is a pseudo-open s-mapping of a metric space X onto a regular feebly 
compact space Y , then Y has a point-countable base.

Theorem 4.11. A regular space has a countable sp-network if and only if it is separable and has a point-
countable sp-network.

Proof. The “only if” part is trivial. To prove the “if” part, assume that a regular space X is separable and 
has a point-countable sp-network P. Let D be a countable dense subset of X. We claim that the countable 
family

N = {P : P ∈ P, P ∩D �= ∅}

is an sp-network for X.
Fix any point x ∈ X, neighborhood Ox ⊂ X of x and set A ⊂ X with x ∈ A. We need to find a set 

N ∈ N such that x ∈ N ⊂ Ox and x ∈ N ∩A. Since x ∈ D and X is a regular space, there is a set P ∈ P

such that x ∈ P ⊂ P ⊂ Ox and x ∈ P ∩D; thus P ∈ N . If x ∈ A, then x ∈ P ∩ A ⊂ P ⊂ Ox. So we can 
assume that x /∈ A. Since the space X has the strong Pytkeev property, it is of countable tightness and we 
can replace the set A by a smaller countable set and assume that A = {an}n∈ω ⊂ X \ {x}. Consider the 
(countable) subfamily N ′ = {N ∈ N : N ⊂ Ox} and write it as N ′ = {P k}k∈ω.

We claim that x ∈ A ∩ P k for some k ∈ ω. To derive a contradiction, assume that x /∈ A ∩ P k for all 
k ∈ ω. Using the regularity of X, for every k ∈ ω fix an open neighborhood Wk of A ∩ P k whose closure 
does not contain x.

For every k ∈ ω fix a neighborhood Uk ⊂ X of ak such that x /∈ Uk and observe that

Vk := Uk ∩
⋂

{Wi : i ≤ k, ak ∈ P i} \
⋃

{P i : i ≤ k, ak /∈ P i}

is a neighborhood of ak. Then the set
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B :=
⋃

k∈ω

D ∩ Vk

contains x in its closure. Consequently, there exists a set P ∈ P such that P ⊂ Ox and x ∈ B ∩ P . Since 
B ⊂ D, the set P belongs to N and N ′, so P = Pk for some k ∈ ω.

Let Ω = {n ∈ ω : an ∈ P k} and observe that for every n ≥ k we have Vn ⊂ Wk if n ∈ Ω and Vn∩P k = ∅

if n /∈ Ω.
Finally, observe that

B ∩ Pk =
⋃

n∈ω

D ∩ Vn ∩ Pk ⊂
⋃

n∈ω

Vn ∩ P k

⊂ (
⋃

n<k

Un) ∪ (
⋃

k≤n∈Ω

Vn ∪
⋃

k≤n/∈Ω

Vn ∩ P k)

⊂ (
⋃

n<k

Un) ∪Wk

and hence x /∈ B ∩ Pk as x does not belong to the closure of the set (
⋃

n<k Un) ∪Wk. �
Corollary 4.12. Let X be a regular space having a point-countable sp-network consisting of separable subsets. 
Then X is a topological sum of strict P0-spaces.

Proof. Let P be a point-countable sp-network consisting of separable subsets for a topological space X. By 
Lemma 2.5(4), X is a meta-Lindelöf space. X is also a locally separable space, because for each x ∈ X, the 
set 

⋃
{P ∈ P : x ∈ P} is a separable neighborhood of x (otherwise, x ∈ X \

⋃
{P ∈ P : x ∈ P}, then there 

is a set P0 ∈ P such that x ∈ P0 and x ∈ P0 ∩ (X \
⋃
{P ∈ P : x ∈ P}), which is a contradiction). By [25, 

Proposition 8.7], X is a topological sum of Lindelöf spaces. It is easy to see that every locally separable 
Lindelöf space is separable. Hence X is a topological sum of separable spaces. By Theorem 4.11, X is a 
topological sum of strict P0-spaces. �
Corollary 4.13. Assume that a regular space X has a point-countable sp-network. The space X is Fréchet-
Urysohn at a point x ∈ X if and only if X is discretely sequential at x.

Proof. The “only if” part is trivial. To prove the “if” part, take any set A ⊂ X and point x ∈ A \A. Since 
X has a countable sp-network at x, X is countably tight at x, so we can find a countable subset B ⊂ A

with x ∈ B. The space B is separable and has a point-countable sp-network. By Theorem 4.11, B has a 
countable sp-network and hence is cosmic and hereditarily Lindelöf, which implies that B has countable 
closed pseudocharacter at x. By Theorem 3.4, B is Fréchet-Urysohn at x, which allows us to find a sequence 
of points {bn}n∈ω ⊂ B ⊂ A that converges to x. �
Remark 4.14. By Corollary 4.13, if a regular space X has a point-countable sp-network, then each k-subspace 
of X is Fréchet-Urysohn (see Theorem 4.2).

We recall that a topological space X has countable cellularity [13, p. 59] (discrete cellularity) if each 
pairwise disjoint (discrete) family of open sets in X is at most countable.

Question 4.15. Does every regular space have a countable sp-network if it has a point-countable sp-network 
and countable (discrete) cellularity?

Question 4.16. Find a characterization of spaces with a point-countable sp-network by certain images of 
metric spaces.
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5. Spaces with σ-closure-preserving sp-networks

In this section, we discuss spaces with σ-closure-preserving sp-networks, prove that a topological space 
is a stratifiable space if and only if it is a regular space having a σ-closure-preserving sp-network, and every 
regular space with a σ-locally finite sp-network has a σ-discrete sp-network.

Let X be a topological space, and P be a family of subset of X. P is called closure-preserving [11, 
p. 350] if 

⋃
{P : P ∈ P ′} =

⋃
{P : P ∈ P ′} for each P ′ ⊂ P. P is called discrete [11, p. 349] if for each 

point x in X there is a neighborhood Ox of the point x such that the set Ox meets at most one element of 
the family P. It is obvious that every discrete family of a space is locally finite; every locally finite family 
of a space is closure-preserving; and every disjoint and closure-preserving family of closed subsets of a space 
is discrete. Recall some spaces defined by σ-closure-preserving families. The space X is called an M1-space
[12, Definition 1.1] if it is a regular space with a σ-closure-preserving base. A family B of subsets of X is 
called a quasi-base [12, p. 105] for X if, for any neighborhood U of each point x ∈ X, there is B ∈ B such 
that x ∈ B◦ ⊂ B ⊂ U . The space X is called an M2-space [12, Definition 1.2] if it is a regular space with a 
σ-closure-preserving quasi-base. A family P of ordered pairs of subsets of X is called a pair-base [12, p. 106]
for X if P satisfies the following conditions: (i) (P1, P2) ∈ P ⇒ P1 ⊂ P2 and P2 is open in X; (ii) for any 
neighborhood U of each point x ∈ X, there is (P1, P2) ∈ P such that x ∈ P1 ⊂ P2 ⊂ U . The space X is 
called an M3-space [12, Definition 1.3] if it has a σ-cushioned pair-base, in which a family F of ordered pairs 
of subsets of X is called cushioned [11, p. 352] if 

⋃
{P1 : (P1, P2) ∈ F ′} ⊂

⋃
{P2 : (P1, P2) ∈ F ′} for each 

F ′ ⊂ F . The space is called a σ-space [23, Definition 4.3] if it is a regular space with a σ-closure-preserving 
(equivalently, σ-discrete) network [23, Theorem 4.11]. It is obvious that [23]

metrizable spaces ⇒ M1-spaces ⇒ M2-spaces

⇒ M3-spaces ⇒ paracompact and σ-spaces.

G. Gruenhage [22, Theorem 1] and H.J.K. Junnila [27, Theorem 4.17] independently proved that every 
M3-space is an M2-space. “Whether every M2-space is an M1-space” is one of the most difficult classic 
problems in general topology [24]. On the other hand, C.R. Borges introduced stratifiable spaces and proved 
that every stratifiable space is equivalent an M3-space [10, Theorem 7.2].

Definition 5.1. A space X is called semi-stratifiable [31, Definition 1.4.3] if, there is a function G assigning 
an open set G(n, F ) for each n ∈ N and each closed set F ⊂ X satisfying the following conditions:

(1) F =
⋂

n∈N
G(n, F );

(2) F ⊂ K ⇒ G(n, F ) ⊂ G(n, K) for each n ∈ N.
If, in addition,
(3) F =

⋂
n∈N

G(n, F ),
then X is said to be stratifiable [10, Definition 1.1].

It is known that every stratifiable space is a σ-space, and every σ-space is semi-stratifiable [23, Theo-
rem 5.9].

Definition 5.2. A space X is called monotonically normal [26, Definition 2.1] if, there is a function D
assigning an open set D(H, K) for each pair (H, K) of disjoint closed subsets of X satisfying the following 
conditions:

(1) H ⊂ D(H, K) ⊂ D(H,K) ⊂ X \K;
(2) if (H ′, K ′) is a pair of disjoint closed subsets of X, H ⊂ H ′ and K ′ ⊂ K, then D(H, K) ⊂ D(H ′, K ′).

The function D is called a monotone normality operator for X.
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Lemma 5.3. The following are equivalent for a space X:
(1) X is a stratifiable space.
(2) X is a regular space with a σ-closure-preserving quasi-base [22,27].
(3) X is a monotonically normal, semi-stratifiable space [26, Theorem 2.5].

By sp-networks, a new characterization of stratifiable spaces is obtained, which gives a partial answer to 
Question 1.3.

Theorem 5.4. A topological space is a stratifiable space if and only if it is a regular space with a σ-closure-
preserving sp-network.

Proof. It is easy to see that each quasi-base for a space is an sp-network. By Lemma 5.3, every stratifiable 
space is a regular space with a σ-closure-preserving sp-network.

Conversely, let X be a regular space with a σ-closure-preserving sp-network F . By the regularity of X, 
the family F can be denoted by 

⋃
n∈N

Fn, where each Fn is a closure-preserving family of closed subsets 
of X. It is easy to check that X is semi-stratifiable. By Lemma 5.3, we only need to prove that X is a 
monotonically normal space.

For each pair (H, K) of disjoint closed subsets of X, define D(H, K) = (
⋃

n∈N
Un)◦, where each

Un =
⋃

{F ∈
⋃

i≤n

Fn : F ∩K = ∅} \
⋃

{F ∈
⋃

i≤n

Fn : F ∩H = ∅}.

Next we will show that D is a monotone normality operator for X. First, if (H ′, K ′) is a pair of disjoint closed 
subsets of X, H ⊂ H ′ and K ′ ⊂ K, then D(H, K) ⊂ D(H ′, K ′). And then we prove that H ⊂ D(H, K). If 
there is a point x ∈ H \D(H, K), then x ∈ X \

⋃
i∈N

Ui ∩H. Because x ∈ X \K, there exists a set P ∈ F

such that x ∈ P ⊂ X \K and x ∈ P ∩ (X \
⋃

i∈N
Ui). Suppose that P ∈ Fk for some k ∈ N. Since x ∈ H

implies that X \
⋃
{F ∈

⋃
i≤k Fi : F ∩H = ∅} is an open neighborhood of the point x,

(X \
⋃

{F ∈
⋃

i≤k

Fi : F ∩H = ∅}) ∩ P ∩ (X \
⋃

i∈N

Ui) �= ∅.

Since P \
⋃
{F ∈

⋃
i≤k Fi : F ∩H = ∅} ⊂ Uk, Uk ∩ (X \

⋃
i∈N

Ui) �= ∅, which is a contradiction. Therefore, 
H ⊂ D(H, K).

Finally, we prove that D(H,K) ⊂ X \ K. Suppose that there is a point x ∈ D(H,K) ∩ K, then x ∈
X \ H. Because F is an sp-network for X, there exists a set Q ∈ F such that x ∈ Q ⊂ X \ H and 
x ∈ Q ∩D(H,K). So we can choose m ∈ N such that Q ∈ Fm, then Q ∩ Uk = ∅ for each k ≥ m. It shows 
that x ∈ Q ∩

⋃
i<m Ui ⊂

⋃
i<m Ui =

⋃
i<m Ui. Therefore, there exists i0 < m such that

x ∈ U i0 ⊂
⋃

{F ∈
⋃

i≤i0

Fi : F ∩K = ∅} ⊂ X \K,

which is a contradiction. Thus we have that D(H,K) ⊂ X \K. It shows that X is a monotonically normal 
space. Hence, X is a stratifiable space. �
Remark 5.5. (1) It follows from Theorem 5.4 and Lemma 5.3 that every regular space with a σ-closure-
preserving sp-network is a paracompact space, thus it is collectionwise normal [11, p. 352].

(2) There is a non-normal, sequential regular space with a σ-locally finite Pytkeev network (equivalently, 
k-network) [15, Example 3.3].

(3) Under Martin’s Axiom and the negation of the continuum hypothesis, there is a k-and ℵ0-space that 
is not monotonically normal (and hence not stratifiable) [15, Example 3.4].
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The second part of this section, we discuss some spaces defined by σ-locally finite families. It is well 
known that a regular space has a σ-locally finite base if and only if it has a σ-discrete base [13, p. 282]. It is 
also true that a regular space has a σ-locally finite k-network (resp., cs∗-network, wcs∗-network) if and only 
if it has a σ-discrete k-network [14, Theorem 4] (resp., cs∗-network, wcs∗-network [31, Theorem 3.8.4]). The 
following result is obtained for sp-networks, which gives a partial answer to Question 1.2.

Let P and Q be the families of subsets of a set X. Define

P ∧ Q = {P ∩Q : P ∈ P, Q ∈ Q}.

The family P is called star-finite [11, p. 368] if each element of P only meets at most finitely many elements 
of P.

Theorem 5.6. The following are equivalent for a regular space X:
(1) X has a σ-discrete sp-network.
(2) X has a σ-locally finite sp-network.

Proof. We only need to prove that (2) implies (1). Let P = {Pα : α ∈ A} be a σ-locally finite sp-network 
for the space X. By the regularity of X, we can assume that P =

⋃
m∈N

Pm, where each Pm is a locally 
finite family of closed sets of X.

For each m ∈ N, since Pm is locally finite in X, there exists an open cover Um of X such that any element 
of Um intersects at most finitely many elements of Pm. By Theorem 5.4, X is a paracompact space, thus 
Um has a σ-discrete closed refinement {Fβ : β ∈ Bm,n, n ∈ N}, where {Fβ : β ∈ Bm,n} is discrete for each 
n ∈ N. It follows that, if β ∈

⋃
n∈N

Bm,n, then the set Fβ only meets at most finitely many elements of Pm.
By the paracompactness of X, for each pair (m, n) ∈ N2, there exists a pairwise disjoint family {Wβ :

β ∈ Bm,n} of open subsets of X such that each Fβ ⊂ Wβ . Let

Cm,n = {(α, β) : Pα ∈ Pm, β ∈ Bm,n and Pα ∩ Fβ �= ∅}.

Then the family {Pα ∩Wβ : (α, β) ∈ Cm,n} is star-finite. Indeed, if (Pα ∩Wβ) ∩ (Pγ ∩Wδ) �= ∅ for some 
(α, β), (γ, δ) ∈ Cm,n, the fact that Wβ ∩Wδ �= ∅ and β, δ ∈ Bm,n forces β = δ, and thus (γ, β) ∈ Cm,n, so 
Pγ ∩ Fβ �= ∅. This shows that the set Pγ is one of the finitely many elements of Pm which meets the set 
Fβ . So there are only finitely many pair (γ, δ) ∈ Cm,n for which (Pα ∩Wβ) ∩ (Pγ ∩Wδ) �= ∅.

For each (α, β) ∈ Cm,n and each i ∈ N, let

S(α, β, i) = Pα ∩
⋃

{Pγ ∈ Pi : Pγ ⊂ Wβ},

then S(α, β, i) ⊂ Pα ∩Wβ . Define

S (m,n, i) = {S(α, β, i) : (α, β) ∈ Cm,n}.

The family S (m, n, i) inherits the star-finite property from the family {Pα ∩ Wβ : (α, β) ∈ Cm,n}. Note 
too that each member of S (m, n, i) is the union of a subfamily of the locally finite family Pm

∧
Pi and 

thus S (m, n, i) is closure-preserving. Because a star-finite family of sets is σ-disjoint [11, Lemma 3.10] and 
a disjoint and closure-preserving family of closed sets is discrete, the family S (m, n, i) is σ-discrete.

Define S =
⋃
{S (m, n, i) : m, n, i ∈ N}. Then S is a σ-discrete family of closed subsets of X. We 

prove that S is an sp-network for X. Let x ∈ U ∩ Y with U open and Y subset in X. Since P is an 
sp-network for X, there exist m ∈ N and Pα ∈ Pm such that x ∈ Pα ∩ Y and x ∈ Pα ⊂ U . Because ⋃

n∈N
{Fβ : β ∈ Bm,n} = X, there exist n ∈ N and β ∈ Bm,n such that x ∈ Fβ . Then Pα ∩ Fβ �= ∅, and 

(α, β) ∈ Cm,n. By x ∈ Wβ , there exist i ∈ N and Pγ ∈ Pi such that x ∈ Pγ ⊂ Wβ ∩U and x ∈ Pγ ∩ Pα ∩ Y . 
So we have that x ∈ S(α, β, i) ∩ Y ⊂ S(α, β, i) ⊂ Pα ⊂ U . Thus, the family S is an sp-network for X. �
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6. Topological groups with sp-networks

In this section, we will find some applications of sp-networks in topological spaces with algebra structures. 
It will be showed that every topological group with countable sp-character is metrizable.

Let G be a topological space with a group structure. The space G is called a semitopological group [5, 
p. 12] if the product map of G ×G into G is separately continuous. The space G is called a quasitopological 
group [5, p. 12] if G is a semitopological group and the inverse map of G onto itself is continuous. The space 
G is called a paratopological group [5, p. 12] if the product map of G ×G into G is jointly continuous. The 
space G is called a topological group [5, p. 12] if G is a paratopological group and the inverse map of G onto 
itself is continuous.

Some cardinal invariants are defined as follows. Let X be a topological space.

d(X) = min{|D| : D = X}, the density [13, P. 25] of X;

nw(X) = min{|P| : P is a network for X}, the network weight [13, P. 127] of X;

spnw(X) = min{|P| : P is an sp-network for X}, the sp-network weight of X;

spχ(X,x) = min{|P| : P is an sp-network at x}, the sp-character at x ∈ X;

spχ(X) = sup{spχ(X,x) : x ∈ X}, the sp-character of X.

A topological space X is of countable sp-character if spχ(X) ≤ ω.

Theorem 6.1. Let X be a paratopological group. Then spnw(X) = nw(X)spχ(X).

Proof. It is obvious that nw(X)spχ(X) ≤ spnw(X). Next, we will show that spnw(X) ≤ nw(X)spχ(X). 
Assume that P is an sp-network at the unit e of the paratopological group X with |P| = spχ(X, e). Let 
N be a network for X with |N | = nw(X).

We claim that the family Q = {NP : N ∈ N , P ∈ P} is an sp-network for the space X. Given a 
point x ∈ U ∩ A with U open and A subset in X, we need to find sets N ∈ N and P ∈ P such that 
x ∈ NP ⊂ U and x ∈ NP ∩A. Because X is a paratopological group, we can find a neighborhood Ux of 
x and a neighborhood Ue of e in X such that UxUe ⊂ U . Since N is a network for X, there exists a set 
N ∈ N such that x ∈ N ⊂ Ux. Since e ∈ x−1A and P is an sp-network at e, there exists a set P ∈ P

such that e ∈ P ⊂ Ue and e ∈ P ∩ x−1A. Then x ∈ NP ⊂ UxUe ⊂ U and x ∈ xP ∩ x−1A = xP ∩A ⊂
NP ∩A. Therefore, Q is an sp-network for X. Since |Q| ≤ |N ||P| = nw(X)spχ(X, e), we conclude that 
spnw(X) ≤ nw(X)spχ(X). �
Corollary 6.2. If a paratopological group is a cosmic space with countable sp-character, then it has a countable 
sp-network.

Remark 6.3. (1) Theorem 6.1 does not hold for quasitopological groups. There is a first-countable cosmic 
quasitopological group X which fails to be an ℵ0-space [6, Example 4.11], and hence X does not have a 
countable sp-network.

(2) The result “spnw(X) = d(X)spχ(X)” does not hold for paratopological groups X. Recall that the 
Sorgenfrey line is the reals R endowed with the topology generated by the base consisting of right half-open 
intervals [a, b), a < b. It is a classical example of a paratopological group which is not a topological group 
[5, Example 1.2.1]. Let X be the Sorgenfrey line. Then X is a first-countable separable space and hence has 
countable sp-character. But X is not a cosmic space. It shows that X does not have a countable sp-network.

Theorem 6.4. If a paratopological group X has countable sp-character, then either X is first-countable or 
{e} = U ∩ U−1 for some neighborhood U ⊂ X of the unit e.
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Proof. Fix a countable sp-network P at the unit e of X. Enlarging P by a larger family, we can assume 
that P is closed under finite unions.

Assuming that {e} �= U ∩ U−1 for every neighborhood U ⊂ X of the unit e, we shall prove that the 
paratopological group X is first-countable. Consider the mapping f : X → X×X defined by f(x) = (x, x−1). 
By our assumption, the image f(X) is a non-discrete subset in X×X. Since (the topological homogeneous) 
space X has countable sp-character at e, the space X has the strong Pytkeev property. By [8, Theorem 3.1], 
the product X×X has the strong Pytkeev property and hence is countable tightness. Consequently, we can 
find a sequence of points {xn}n∈ω in X \ {e} such that for any neighborhood U ⊂ X of the unit e, there 
exists n ∈ ω such that (xn, x−1

n ) ∈ U × U .
Consider the countable family N = {x−1

n P : n ∈ ω, P ∈ P} and let N ◦ = {N◦ : N ∈ N , e ∈ N◦} be 
the family of interiors N◦ of the sets N ∈ N that are neighborhoods of e. We claim that the countable 
family N ◦ is a neighborhood base at e.

Given any neighborhood Oe ⊂ X of e, we should find n ∈ ω and P ∈ P such that x−1
n P is a neighborhood 

of e and x−1
n P ⊂ Oe. By the continuity of the multiplication in the paratopological group X, there exists 

a neighborhood Ue ⊂ X of e such that UeUe ⊂ Oe. Let Ω = {n ∈ ω : xn, x−1
n ∈ Ue} and P ′ = {P ∈

P : P ⊂ Ue}. Since the family P is closed under finite unions, so is its subfamily P ′. It follows that 
x−1
n P ⊂ UeUe ⊂ Oe for any n ∈ Ω and P ∈ P ′.
We claim that for some P ∈ P ′ and n ∈ Ω the set x−1

n P is a neighborhood of e. To derive a contradiction, 
assume that x−1

n P is not a neighborhood of e for all P ∈ P ′ and n ∈ Ω. Then P is not a neighborhood of 
xn for all P ∈ P and n ∈ Ω.

Write the countable family P ′ as {Pk}k∈ω. Since X is Hausdorff, each point xn has a closed neighborhood 
Wn such that e /∈ Wn. For every n ∈ Ω the set 

⋃
k≤n Pk belongs to P ′ and hence is not a neighborhood of 

xn. Consequently, the set Wn \
⋃

k≤n Pk contains xn in its closure and then the set

A =
⋃

n∈Ω
(Wn \

⋃

k≤n

Pk)

contains e in its closure. Since P is an sp-network at e, there exists a set P ∈ P such that P ⊂ Ue and 
e ∈ A ∩ P . Then P ∈ P ′ and hence P = Pi for some i ∈ ω. Now observe that

A ∩ P = Pi ∩
⋃

n∈Ω
(Wn \

⋃

k≤n

Pk) ⊂ Pi ∩
⋃

n<i

(Wn \
⋃

k≤n

Pk) ⊂
⋃

n<i

Wn

and hence the unit e cannot belong to the closure of A ∩ P as e does not belong to the closure of the set ⋃
n<i Wn. �

Corollary 6.5. A topological group is metrizable if and only if it has countable sp-character.

Proof. It is enough to prove the sufficiency. If a topological group X has countable sp-character, by 
Theorem 6.4, then the space X is first-countable; thus the topological group X is metrizable [5, Theo-
rem 3.3.12]. �

Corollary 6.5 can be also derived from the following descriptions of topological spaces with countable 
sp-character (see Remark 6.7). Let U be a family of non-empty open subsets of a topological space X. U
is called a π-base [5] at a point x ∈ X if each neighborhood Ox of x contains some set U ∈ U . U is called 
a π-base for X if U is a π-base at each point x ∈ X.

Theorem 6.6. Assume that a topological space X has countable sp-character at a point x ∈ X. If one of the 
following conditions is satisfied, then X has a countable π-base at x.
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(1) X is a regular space.
(2) X has countable tightness.

Proof. (1) Assume that a regular space X has countable sp-character at x. Then X has countable tightness 
at x. So, we can find a countable set C ⊂ X \ {x} containing x in its closure. By the regularity of X, there 
exists a decreasing sequence {Un}n∈ω of open neighborhoods of x such that Un+1 ⊂ Un for every n ∈ ω and 
C∩

⋂
n∈ω Un = ∅. Let Uω =

⋂
n∈ω Un. Then Uω =

⋂
n∈ω Un is closed and observe that x ∈ C∩U0 ⊂ U0 \ Uω.

Fix a countable sp-network P at x. Replacing each P ∈ P by its closure, we can assume that P consists 
of closed subsets of X. We claim that for any neighborhood Ox ⊂ X of x, there exists a set P ∈ P such that 
P ⊂ Ox and P has non-empty interior in X. To derive a contradiction, assume that for some neighborhood 
Ox of x each set P ⊂ Ox with P ∈ P has empty interior and being closed and nowhere dense in X.

Consider the subfamily P ′ = {P ∈ P : P ⊂ Ox} and write it as P ′ = {Pi}i∈ω. For every k ∈ ω, put

Wk = Uk \ (Uk+2 ∪
⋃

i≤k

Pi).

Since each Pk is nowhere dense in X, the set

W k = (Uk \ Uk+2) ∩
⋂

i≤k

(X \ Pi)

⊃ (Uk \ Uk+2) ∩X \
⋃

i≤k

Pi = Uk \ Uk+2.

Consequently, U0 \ Uω =
⋃

k∈ω(Uk \ Uk+2) ⊂
⋃

k∈ω W k, thus the union W =
⋃

k∈ω Wk is dense in U0 \ Uω

and hence contains x in its closure. Since P ′ is an sp-network at x, there exists k ∈ ω such that x ∈ Pk ∩W . 
Then also

x ∈ Pk ∩W ∩ Uk+1 ⊂ Pk ∩ (
⋃

i<k

Wi) ∩ Uk+1 = ∅,

which is a desired contradiction.
This contradiction implies that the family U of non-empty interiors of the sets P ∈ P is a countable 

π-base at x.
(2) Assume that a topological space X have countable tightness at each point and a countable sp-network 

at a point x ∈ X. Let P be a countable sp-network at the point x. Put

B = {
⋃

P ′ : P ′ ∈ [P]<ω}.

Then B is countable. Next we will show that the family B◦ = {B◦ : B ∈ B} is a π-base at x.
To derive a contradiction, assume that there exists an open neighborhood U of x such that U contains 

no element of B◦. Because X has a countable tightness at the point x and x ∈ U \ {x}, there exists a 
countable subset A = {xi}i∈ω ⊂ U \ {x} such that x ∈ A. Write the family {P ∈ P : x ∈ P ⊂ U} as 
{Pi}i∈ω. For each i ∈ ω, there is an open neighborhood Ui of the point xi such that Ui ⊂ U and x /∈ U i. 
Since (

⋃
j≤i Pj)◦ = ∅, we have that xi ∈ Ui ∩ X \

⋃
j≤i Pj ⊂ Ui \

⋃
j≤i Pj . By the countable tightness of 

X, there exists a countable subset Ai of Ui \
⋃

j≤i Pj such that xi ∈ Ai; thus x /∈ Ai and Pj ∩ Ai = ∅ for 
each i > j. Clearly, x ∈ A ⊂

⋃
i∈ω Ai. Because P is a countable sp-network at the point x, there exists a 

set P ∈ P such that x ∈ P ⊂ U and x ∈ P ∩
⋃

i∈ω Ai. Thus we can choose m ∈ ω such that P = Pm. It 
shows that x ∈ P ∩

⋃
i≤m Ai ⊂

⋃
i≤m Ai, which is a contradiction. �
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Remark 6.7. The following is another proof of Corollary 6.5. If a topological group X has countable 
sp-character, then X has a countable π-base U at the unit e. Then the family {UU−1 : U ∈ U } is a 
countable neighborhood base at e. Thus X is metrizable.

Corollary 6.8. If a topological space X has countable sp-character, then X is separable if and only if it has 
a countable π-base.

Proof. The “only if” part is trivial. To prove the “if” part, assume that the space X is separable and has 
countable sp-character. Take any x ∈ X, by Theorem 6.6(2), X has a countable π-base Px at x. Because 
X is separable, we can choose a countable subset D = {dn}n∈ω of X such that D = X.

We claim that the countable family P =
⋃
{Pdn

: n ∈ ω} is a countable π-base for X. For each 
non-empty open subset U of X, there exists a point dn ∈ U . Then we can choose a set P ∈ Pdn

such that 
P ⊂ U . It means that P is a countable π-base for X. �

The following example shows that the condition “sp-network” cannot be weakened to the “strict Pytkeev 
network” in Corollary 6.5, which gives a negative answer to Question 1.6.

By a free topological group [5, p. 409] over a topological space X we understand a pair (F (X), iX)
consisting of a topological group F (X) and a continuous map iX : X → F (X) such that for every continuous 
map f : X → G to a topological group G there exists a unique continuous group homomorphism h : F (X) →
G such that f = h ◦ iX .

Example 6.9. There is a non-Fréchet-Urysohn, sequential topological group with a countable strict Pytkeev 
network.

Proof. Let X be a copy of the sequential fan Sω, see Example 4.3. Since X is a kω-space, it follows from 
[5, Theorem 7.4.1] that the free topological group F (X) is also a kω-space, thus F (X) is a k-space. Since X
is an ℵ0-space, F (X) is an ℵ0-space [4, Theorem 4.1]. By Lemmas 2.4(1) and 2.5(1), F (X) is a sequential 
space with a countable Pytkeev network. Then F (X) has a countable strict Pytkeev network. Since X is 
non-discrete, F (X) is not first-countable [5, Theorem 7.1.20]. By Corollary 6.5 and Lemma 3.3, F (X) is 
not Fréchet-Urysohn. �
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