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ON PERFECT IMAGES OF µ-SPACES
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Abstract. A space X is called a µ-space if it can be embedded in the

product of countably many paracompact Fσ-metrizable spaces. K. Nagami

in [15] posed the following problem: is the perfect image of a µ-space a

µ-space?

By the saturated sets-topology of submetrizable spaces, in this paper

the following theorem is proved, which gives a partial answer to Nagami’s

problem.

Theorem. Let (X, τ) be a µ-space and f : (X, τ) → (Y,U) a perfect map-

ping. Then

(i) there are topologies {τn}n∈ω on X satisfying for each n ∈ N there is

a saturated sets-topology Sn on (f, τn, τ0) such that τ0 ⊂ Sn ⊂ τ ;

(ii) if Sn ⊂ τn for each n ∈ N, then (Y,U) is a µ-space.

1. Introduction

Mi-spaces for i = 1, 2 and 3 were introduced by J. Ceder [1], which are im-

portant classes in generalized metric spaces [6, 10]. It is easy to see that every

M1-space is an M2-space, and every M2-space is an M3-space. J. Ceder didn’t

know if any of these classes were in fact different. In the 1970s, G. Gruenhage [5]

and H.J.K. Junnial [8] independently proved that M3-spaces and M2-spaces are

the same. But to this day, it is not known if M3-spaces and M1-spaces are the
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same [13]. There are classes of spaces formally stronger than M1-spaces for which

it is as yet undetermined whether every M3-space belongs to the classes [7]. The

most pertinent of these classes is the class of µ-spaces, introduced by K. Nagami

for dimension theory reasons [14, 15]. S. Oka [16] and T. Mizokami [11] showed

that dimX = IndX for every µ-space X. Mizokami [12] proved every M3-µ-space

is M1.

A space is called an Fσ-metrizable space if it is the union of countably many

closed metrizable subspaces. A space X is called a µ-space in [14] if X can be

embedded in the product of countably many paracompact Fσ-metrizable spaces.

A mapping f : X → Y is called a perfect mapping if f is continuous closed onto

and f−1(y) is compact for every y ∈ Y . Perfect mappings are a well-behaved

class in terms of various mappings. The following interesting and long-standing

difficult Nagami’s problem [15] is still open.

Proposition 1.1. Is the perfect image of a µ-space a µ-space?

H.J.K. Junnila and T. Mizokami proved that the closed image of an M3-Fσ-

metrizable space is a µ-space [9], and K. Tamano [19] gave an example which is

a continuous image of a separable metric space but not a µ-space. They gave a

partial answer to Nagami’s problem.

In this paper, we consider Nagami’s problem, give it a partial answer. Let

f : X → Y be a perfect mapping and X a µ-space, we can study the pre-image

X instead of studying the image Y .

In this paper, all mappings are onto, all spaces are regular and T1-spaces, and

the letters N, ω denote the set of positive integers, the set of natural numbers,

respectively. For undefined notation and terminologies, the reader may refer to

[4, 6].

2. Some lemmas and propositions

In this section, a characterization of µ-spaces is given by µ-bases, and a sat-

urated sets-topology on a mapping is introduced, which will play an important

role studying perfect images of µ-spaces. A topological space (X, τ) is called sub-

metrizable [6] if there exists a metric ρ on X such that the metric topology τρ
induced by ρ is coarser than τ , and the metric ρ on X is called a submetric on X.

A space is called a σ-space [6] if it has a σ-locally finite network, where a family

P of subsets of a space X is called a network [4] for X if, whenever x ∈ U with

U open in X, there is P ∈ P such that x ∈ P ⊂ U . It is well-known that every
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µ-space is a paracompact σ-space, and every paracompact σ-space is a submetriz-

able space [6]. V. Popov [17] gave an example which shows the perfect image of

a hereditarily paracompact submetrizable space needs not be submetrizable.

If ρ is a metric on a set X, the metric topology on X induced by ρ is always

denoted by τρ in this paper. The following lemmas show that paracompact σ-

spaces have special submetrics.

Lemma 2.1. [18, Lemma 2.20] Let (X, τ) be a paracompact σ-space. If D is a

σ-discrete family of open subsets of X, then there is a submetric d on X with

D ⊂ τd.

Lemma 2.2. [2, Theorem 2.8] Let (X, τX) be a paracompact σ-space and f :

(X, τX) → (Y, τY ) a perfect mapping. If ρ0, d0 are submetrics on spaces X,Y

respectively, then there are a submetric metric ρ on (X, τX) and a submetric d on

(Y, τY ) such that f : (X, ρ)→ (Y, d) is a perfect mapping, τρ0 ⊂ τρ and τd0 ⊂ τd.

K. Tamano [19] showed the following result, which constructed some special

metric and bases studying µ-spaces.

Theorem 2.3. [19, Lemma, p. 260] A topological space (X, τ) is a µ-space if

and only if there is an increasing sequence {τn}n∈ω of topologies on X satisfying

the following conditions:

(i)
⋃
n∈ω τn is a base of τ ;

(ii) each (X, τn) is paracompact and (X, τ0) is metrizable;

(iii) for every n ∈ N, there is a sequence {Xni}i∈N of τ0-closed sets of X such

that X =
⋃
i∈NXni, and τn|Xni = τ0|Xni for each i ∈ N.

For convenience’s sake, a family
⋃
n∈ω τn of subsets of a µ-space (X, τ) is called

a µ-base if it satisfies (i)-(iii) of Theorem 2.3. Let (X, τ) have a µ-base
⋃
n∈ω τn.

Then each (X, τn) is an Fσ-metrizable space by (ii) and (iii) of Theorem 2.3.

Let A and B be families of subsets of a topological space X. Denote

A ∧ B = {A ∩B : A ∈ A, B ∈ B}.

Proposition 2.4. Let
⋃
n∈ω τn be a µ-base for a µ-space (X, τ). If ρ is a sub-

metric of (X, τ), then there exists a µ-base
⋃
n∈ω τ

′
n for X such that τρ ⊂ τ ′0 and

τn ⊂ τ ′n for each n ∈ ω.

Proof. Let D and D0 be σ-discrete bases of (X, τρ) and (X, τ0), respectively.

Since (X, τ) is a paracompact σ-space, by Lemma 2.1, there is a submetric d on

X such that D ∪D0 ⊂ τd ⊂ τ .
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Let τ ′0 = τd. Then τρ ∪ τ0 ⊂ τ ′0. For each n ∈ N, let Bn = τn ∧ τd. Then

τn ∪ τd ⊂ Bn ⊂ Bn+1 ⊂ τ , and Bn is a base for some topology τ ′n of X. Thus

τn ∪ τd ⊂ τ ′n ⊂ τ ′n+1 ⊂ τ for each n ∈ ω. By
⋃
n∈ω τn ⊂

⋃
n∈ω τ

′
n ⊂ τ ,

(i)
⋃
n∈N τ

′
n is a base of τ .

(ii) Each (X, τ ′n) is paracompact and (X, τ ′0) is metrizable.

The space (X, τ ′n) is regular, because it is easy to see that clτ ′
n
(U ∩ V ) ⊂

clτnU ∩clτdV for each U, V ⊂ X. To complete the proof it is enough to prove that

every cover O of X by members of Bn has a σ-locally finite open refinement in

(X, τ ′n). Let P be a σ-locally finite network for the Fσ-metrizable space (X, τn)

and E a σ-locally finite base for the metrizable space (X, τd). Denote O by

{Uλ ∩ Eλ : Uλ ∈ τn and Eλ ∈ τd for each λ ∈ Λ}, and put

Q ={P ∩ E : P ∈ P, E ∈ E , P ⊂ Uλ and E ⊂ Eλ for some λ ∈ Λ}
={Qγ : γ ∈ Γ}

Then Q is a cover of X, since P is a network for (X, τn) and E is a base for (X, τd).

For each γ ∈ Γ , there are Pγ ∈ P, Eγ ∈ E and λγ ∈ Λ such that Qγ = Pγ ∩ Eγ ,

Pγ ⊂ Uλγ and Eγ ⊂ Eλγ . It is well-known that if {Fs}s∈S is a locally finite

family of subsets of a paracompact space, then there is a locally finite family

{Vs}s∈S of open subsets such that Fs ⊂ Vs for each s ∈ S [4, Remark 5.1.19].

Since {Pγ : γ ∈ Γ} is σ-locally finite in the paracompact space (X, τn), there is

a σ-locally finite family {Vγ : γ ∈ Γ} of open subsets in (X, τn) such that each

Pγ ⊂ Vγ ⊂ Uλγ . Let W = {Vγ ∩ Eγ : γ ∈ Γ}. It can be checked that W is a

σ-locally finite refinement of O in (X, τ ′n). Hence (X, τ ′n) is paracompact.

(iii) For every n ∈ N, there is a sequence {Xni}i∈N of τ0-closed sets of X such

that X =
⋃
i∈NXni, each τn|Xni = τ0|Xni and each τ ′n|Xni = τ ′0|Xni .

In fact, τρ ∪ τ0 ⊂ τd = τ ′0 by D ∪ D0 ⊂ τd. It follows from (iii) of Theorem 2.3

that there is a sequence {Xni}i∈N of τ0-closed sets of X such that X =
⋃
i∈NXni

and each τn|Xni = τ0|Xni . Then each Xni is a τ ′0-closed set of X.

We will prove τ ′n|Xni = τ ′0|Xni . It is obvious that τ ′0|Xni ⊂ τ ′n|Xni by τ ′0 ⊂ τ ′n.

Let x ∈ O ∩Xni with O ∈ τ ′n. Since τn ∧ τd is a base of τ ′n, there are U ∈ τn and

E ∈ τd such that x ∈ U ∩ E ⊂ O. Then U ∩ Xni ∈ τn|Xni = τ0|Xni ⊂ τd|Xni ,
E∩Xni ∈ τd|Xni , and x ∈ (U ∩Xni)∩ (E∩Xni) ⊂ O∩Xni. So τ ′n|Xni ⊂ τd|Xni =

τ ′0|Xni . �

Let f : (X, τ) → (Y,U) be a mapping. A subset V of X is called a saturated

set on the mapping f if V = f−1(f(V )). For each O ⊂ X, define a set

S(O) =
⋃
{f−1(y) : y ∈ Y and f−1(y) ⊂ O}.
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The following can be checked easily that

(1) the set S(O) is a saturated set on f ;

(2) a subset V of X is saturated if and only if V = S(V );

(3) a point y ∈ f(S(O)) if and only if f−1(y) ⊂ S(O);

(4) S(O) = O \ f−1(f(X \O)) ⊂ O.

Symbols S(O) is used always with the same meaning throughout this paper.

Next we introduce some properties of the set S(O).

Proposition 2.5. Assume f : (X, τ)→ (Y,U) be a mapping. Then

(i) S(O1) ∩ S(O2) = S(O1 ∩O2) for each O1, O2 ⊂ X;

(ii) S(
⋃
α∈Λ S(Oα)) =

⋃
α∈Λ S(Oα) for each Oα ⊂ X;

(iii) f(S(O1)) ∩ f(S(O2)) = f(S(O1) ∩ S(O2)) for each O1, O2 ⊂ X;

(iv) f(X \ S(O)) = Y \ f(S(O)) for each O ⊂ X.

Proof. (i) Let y ∈ Y and f−1(y) ⊂ S(O1) ∩ S(O2). Then f−1(y) ⊂ O1 ∩ O2,

thus f−1(y) ⊂ S(O1 ∩O2). Hence, S(O1) ∩ S(O2) ⊂ S(O1 ∩O2).

On the other hand, let y ∈ Y and f−1(y) ⊂ S(O1∩O2). Then f−1(y) ⊂ O1∩O2,

thus f−1(y) ⊂ S(O1) ∩ S(O2). Hence S(O1 ∩O2) ⊂ S(O1) ∩ S(O2).

(ii) It is clear that S(
⋃
α∈Λ S(Oα)) ⊂

⋃
α∈Λ S(Oα). Let y ∈ Y and f−1(y) ⊂⋃

α∈Λ S(Oα). Then f−1(y) ⊂ S(
⋃
α∈Λ S(Oα)) by the definition of S(

⋃
α∈Λ S(Oα)).

Thus
⋃
α∈Λ S(Oα) ⊂ S(

⋃
α∈Λ S(Oα)). Therefore, S(

⋃
α∈Λ S(Oα)) =

⋃
α∈Λ S(Oα).

(iii) It is clear that f(S(O1) ∩ S(O2)) ⊂ f(S(O1)) ∩ f(S(O2)). On the other

hand, let y ∈ f(S(O1)) ∩ f(S(O2)). Then f−1(y) ⊂ S(O1) ∩ S(O2), and y ∈
f(S(O1) ∩ S(O2)). Thus f(S(O1)) ∩ f(S(O2)) ⊂ f(S(O1) ∩ S(O2)). Hence,

f(S(O1)) ∩ f(S(O2)) = f(S(O1) ∩ S(O2)).

(iv) Since S(O) is a saturated set on f , X \ S(O) = X \ f−1(f(S(O))) =

f−1(Y \ f(S(O))), thus f(X \ S(O)) = Y \ f(S(O)). �

Lemma 2.6. [3, Proposition 1][2, Lemma 2.2] Let (X, τ) be a topological space

and f : (X, τ) → (Y,U) a continuous mapping. Then the following results are

equivalent.

(i) f is a closed mapping.

(ii) {S(O) : O ∈ τ} ⊂ τ and U = {f(S(O)) : O ∈ τ}.
(iii) If O ∈ τ , then S(O) ∈ τ and f(S(O)) ∈ U .

Corollary 2.1. Let f : (X, τ) → (Y,U) be a closed continuous mapping. The

family {S(O) : O ∈ τ} is a topology for X and the family {f(S(O)) : O ∈ τ} is a

topology for Y .

Proof. By (i) of Proposition 2.5, {S(O) : O ∈ τ} is closed under finite intersec-

tions. Let Oα ∈ τ for each α ∈ Λ. Then
⋃
α∈Λ S(Oα) = S(

⋃
α∈Λ S(Oα)) by (ii) of
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Proposition 2.5, and
⋃
α∈Λ S(Oα) ∈ τ by (iii) of Lemma 2.6. Thus {S(O) : O ∈ τ}

is closed under unions. Hence, {S(O) : O ∈ τ} is a topology for X. In the same

way, we can prove that {f(S(O)) : O ∈ τ} is also a topology for Y . �

In order to obtain non-trivial properties of the topology consisting of saturated

sets on f , we need add some conditions related the mapping f and the topologies

on X.

Proposition 2.7. Let (X, τ) be a topological space and f : (X, τ) → (Y,U) a

continuous mapping. If τ0 is a topology of X, then the family

Q = {S(O) ∩ V : O ∈ τ and V ∈ τ0}

is a base of some topology for X.

Proof. Obviously, X = S(X) ∩X ∈ Q. Let O1, O2 ∈ τ , and V1, V2 ∈ τ0. By (i)

of Proposition 2.5, we have (S(O1)∩V1)∩(S(O2)∩V2) = S(O1∩O2)∩(V1∩V2) ∈ Q.

Hence, Q is a base of some topology for X. �

The topology S generated by the base Q in Proposition 2.7 is called a saturated

sets-topology [3, Definition 1] on (f, τ, τ0). It is obvious that the topology S is

generated by the subbase {S(O) : O ∈ τ} ∪ τ0. If f : (X, τ) → (Y,U) is a

continuous closed mapping and a topology τ0 of X is coarser than τ , then the

saturated sets-topology on (f, τ, τ0) is coarser than τ by Lemma 2.6.

3. Main results

In this section, we discuss the perfect images of µ-spaces by µ-bases and satu-

rated sets-topologies. The following result is a technical lemma.

Lemma 3.1. Let (X, τ) be a µ-space and f : (X, τ)→ (Y,U) a perfect mapping.

Then there is a µ-base
⋃
n∈ω τn for (X, τ) satisfying the following conditions:

(i) for each n ∈ N, let Sn be the saturated sets-topology on (f, τn, τ0), then

τ0 ⊂ Sn ⊂ Sn+1 ⊂ τ ;

(ii) for each n ∈ N, f : (X,Sn) → (Y,Un) is a perfect mapping, where Un =

{f(S(O)) : O ∈ Sn} is a topology of Y ;

(iii) f : (X,S) → (Y,U) is a perfect mapping, where topologies S and U are

generated by bases
⋃
n∈N Sn and

⋃
n∈N Un, respectively.

Proof. By Theorem 2.3, there exists a µ-base
⋃
n∈ω τ

′
n for (X, τ). Since each µ-

space is a paracompact σ-space, by Lemma 2.2, there are a submetric ρ on (X, τ)

and a submetric d on (Y,U) such that f : (X, ρ) → (Y, d) is a perfect mapping
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and τ ′0 ⊂ τρ. By Proposition 2.4, there exists a µ-base
⋃
n∈ω τn for (X, τ) such

that τρ ⊂ τ0 and τ ′n ⊂ τn for each n ∈ ω. Thus τ ′0 ⊂ τρ ⊂ τ0.

For each n ∈ N, let En = {S(O) : O ∈ τn} and Sn the saturated sets-topology

on (f, τn, τ0) with a base Qn = En ∧ τ0. By τ0 ⊂ τn ⊂ τn+1 ⊂ τ and Lemma 2.6,

it is obvious that τ0 ⊂ Qn ⊂ Sn ⊂ Sn+1 ⊂ τ . This completes the proof of (i).

Claim 1. For each n ∈ N and each O ∈ Sn, S(O) ∈ Sn.

In fact, let x ∈ S(O) and y = f(x). Then x ∈ O and f−1(y) ⊂ S(O). If a point

t ∈ f−1(y), then t ∈ S(O) ⊂ O ∈ Sn; and there exist Ot ∈ τn, Vt ∈ τ0 such that

t ∈ S(Ot) ∩ Vt ⊂ O and f−1(y) ⊂ S(Ot). Let Qx = {S(Ot) ∩ Vt : t ∈ f−1(y)}.
Then Qx is a cover of the compact subset f−1(y) in (X, τ). Thus there exists a

finite subfamily Q′x = {S(Oti) ∩ Vti : i ≤ m(x)} of Qx, which covers f−1(y). Let

Ux = (
⋂
i≤m(x)Oti) ∩ (

⋃
i≤m(x) Vti). Then f−1(y) ⊂ Ux ∈ τn by τ0 ⊂ τn; thus

f−1(y) ⊂ S(Ux) ∈ En ⊂ Sn. By (i) of Proposition 2.5,

S(Ux) = S(
⋂

i≤m(x)

Oti) ∩ S(
⋃

i≤m(x)

Vti)

= [
⋂

i≤m(x)

S(Oti)] ∩ (
⋃

i≤m(x)

Vti) ⊂
⋃

i≤m(x)

(S(Oti) ∩ Vti) ⊂ O.

Thus x ∈ S(Ux) = S(S(Ux)) ⊂ S(O). Hence, S(O) =
⋃
{S(Ux) : x ∈ S(O)} ∈

Sn. Claim 1 is proved.

By Claim 1 and the proof of Corollary 2.1, Un = {f(S(O)) : O ∈ Sn} is a

topology for Y . We will show that f : (X,Sn) → (Y,Un) is a perfect mapping.

For each O ∈ Sn, f(S(O)) ∈ Un and f−1(f(S(O))) = S(O) ∈ Sn by Claim 1. It

follows from Lemma 2.6 that f : (X,Sn)→ (Y,Un) is continuous and closed. For

each y ∈ Y , f−1(y) is compact in τ , thus it is compact in Sn because Sn ⊂ τ . In

a word, f : (X,Sn) → (Y,Un) is a perfect mapping. This completes the proof of

(ii).

It is obvious that the family
⋃
n∈N Sn is closed under finite intersections. Thus⋃

n∈N Sn is a base for some topology S of X. Let E = {S(O) : O ∈ τ} and S∗
the saturated sets-topology on (f, τ, τ0) with a base Q = E ∧ τ0. Then S∗ ⊂ τ by

Lemma 2.6.

Claim 2. S = S∗.
It is easy to see that S ⊂ S∗, because En ⊂ E and Qn ⊂ Q for each n ∈ N. To

prove S∗ ⊂ S, it is enough to prove E ⊂ S. Let O ∈ τ , x ∈ S(O) and y = f(x).

Then x ∈ f−1(y) ⊂ S(O) ∈ E ⊂ τ . If a point t ∈ f−1(y), since
⋃
n∈N τn is a

base of τ , there are i(t) ∈ N and Ot ∈ τi(t) with t ∈ Ot ⊂ S(O). Then {Ot :
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t ∈ f−1(y)} is an open cover of the compact subset f−1(y) in (X, τ), and there

exists a finite subfamily {Otj : j ≤ m(x)} covering f−1(y). Let Ux =
⋃
j≤m(x)Otj

and m = maxj≤m(x){i(tj)}. Then f−1(y) ⊂ Ux ∈ τm by each τi ⊂ τi+1. Thus

x ∈ S(Ux) ∈ Em ⊂ Sm and S(Ux) ⊂ Ux ⊂ S(O). Since
⋃
n∈N Sn is a base of S,

S∗ ⊂ S. Claim 2 is proved.

By Claim 2 and Lemma 2.6, if O ∈ S, then S(O) ∈ S.

Claim 3. U = U∗, where U∗ = {f(S(O)) : O ∈ S∗}.
In fact, if U ∈ U , then f−1(U) ∈ τ . Thus f−1(U) = S(f−1(U)) ∈ E ⊂ S∗, and

U = f(S(f−1(U))) ∈ U∗. Hence, U ⊂ U∗.
On the other hand, let f(S(O)) ∈ U∗ with some O ∈ S∗. It follows from

S∗ ⊂ τ that S(O) ∈ S∗, and X \ S(O) is closed in (X, τ). Thus f(X \ S(O)) is

closed in (Y,U). By (iv) of Proposition 2.5, f(X \ S(O)) = Y \ f(S(O)). Then

Y \ f(S(O)) is closed in (Y,U), i.e., f(S(O)) ∈ U . Hence, U∗ ⊂ U . Claim 3 is

proved.

Claim 4.
⋃
n∈N Un is a base of U .

Let U ∈ U . Then U = f(S(O)) with some O ∈ S∗ by Claim 3. For every

y ∈ U , there is an x ∈ S(O) with f(x) = y, then f−1(y) ⊂ S(O) ∈ S∗. By

Claim 2, the family
⋃
n∈N Sn is a base of S∗. If a point t ∈ f−1(y), there exists

Ot ∈ Sn for some n ∈ N with t ∈ Ot ⊂ S(O). Let O = {Ot : t ∈ f−1(y)}. Then

O = {Ot : t ∈ f−1(y)} is an open cover of the compact subset f−1(y) in (X, τ),

and there is a finite subfamily O′ of O covering f−1(y). Let Ux = ∪O′. Then

f−1(y) ⊂ Ux ⊂ S(O), and by each Sn ⊂ Sn+1, Ux ∈ Sm for some m ∈ N. Thus

f−1(y) ⊂ S(Ux) and f(S(Ux)) ∈ Um ⊂
⋃
n∈N Un. Therefore, y ∈ f(S(Ux)) ⊂

f(S(O)) = U . Hence,
⋃
n∈N Un is a base of U . Claim 4 is proved.

Next, we prove that f : (X,S)→ (Y,U) is a perfect mapping. For each U ∈ U ,

U = f(S(O)) for some O ∈ S∗ by Claim 3; and f−1(U) = S(O) ∈ S∗. Thus

f : (X,S) → (Y,U) is continuous. Let W ∈ S. By Claims 2, 3 and Lemma 2.6,

S(W ) ∈ S and f(S(W )) ∈ U . It follows from Lemma 2.6 that f : (X,S)→ (Y,U)

is a closed mapping. For every y ∈ Y , f−1(y) is compact in (X, τ). Since S ⊂ τ ,

f−1(y) is compact in (X,S). In a word, f : (X,S)→ (Y,U) is a perfect mapping.

This completes the proof of (iii). �

The µ-base
⋃
n∈ω τn for (X, τ) in Lemma 3.1 is called a special µ-base on (f, τ).

The following theorem gives a partial answer to Nagami’s problem.
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Theorem 3.2. Let f : (X, τ)→ (Y,U) be a perfect mapping and (X, τ) a µ-space

with a special µ-base
⋃
n∈ω τn on (f, τ). Then (Y,U) is a µ-space, if S(O) ∈ τn

for each n ∈ N and each O ∈ τn.

Proof. For the simplicity of the proof, we use notation in the proof of Lemma

3.1. It is easy to check that for each n ∈ N, Sn ⊂ τn if and only if S(O) ∈ τn for

each O ∈ τn. Let Uτn = {f(S(O)) : O ∈ τn}. By the proof of Corollary 2.1, Uτn is

a topology for Y . Let Uτ0 = {f(S(O)) : O ∈ τρ}.

Claim 5. τd = Uτ0 ⊂ Un ⊂ Uτn ⊂ Uτn+1 ⊂ U for each n ∈ N.

In fact, Uτ0 ⊂ Un by τρ ⊂ τ0 ⊂ Sn. By Lemma 2.6, Un ⊂ Uτn ⊂ Uτn+1 ⊂ U . Let

f(S(O)) ∈ Uτ0 with some O ∈ τρ. Since f : (X, ρ)→ (Y, d) is a perfect mapping,

it follows from (iii) of Lemma 2.6 that f(S(O)) ∈ τd. Then Uτ0 ⊂ τd. On the other

hand, if V ∈ τd, then f−1(V ) ∈ τρ, and V = f(f−1(V )) = f [S(f−1(V ))] ∈ Uτ0 .

Thus τd ⊂ Uτ0 . Claim 5 is proved.

Claim 6. (Y,Uτn) is a paracompact Fσ-metrizable space.

For each O ∈ τn, f−1(f(S(O))) = S(O) ∈ Sn ⊂ τn and f(S(O)) ∈ Uτn .

Then f : (X, τn) → (Y,Uτn) is continuous and closed by Lemma 2.6. For each

y ∈ Y , f−1(y) is compact in τ , thus it is compact in τn. This shows that f :

(X, τn) → (Y,Uτn) is a perfect mapping. Since (X, τn) is paracompact, (Y,Uτn)

is also paracompact. By (iii) of the proof of Proposition 2.4, let X =
⋃
i∈NXni,

where each Xni is a τ ′0-closed set, and each τn|Xni = τ0|Xni . Let Yni = f(Xni).

It is obvious that Y =
⋃
i∈N Yni. Since each Xni is τ ′0-closed, Xni is τρ-closed

by τ ′0 ⊂ τρ. So Yni is τd-closed, and Yni is Uτn -closed by τd ⊂ Uτn . Since Xni

is τn-closed, f |Xni : (Xni, τn|Xni) → (Yni,Uτn |Yni) is a perfect mapping. Since

τn|Xni = τ0|Xni and (X, τ0) is metrizable, (Xni, τn|Xni) and (Yni,Uτn |Yni) are

metrizable subspaces. Claim 6 is proved.

Next, we show that (Y,U) is a µ-space. For each n ∈ N, let Yn = (Y,Uτn),

and idn : (Y,U) → Yn be the identity mapping. Then Yn is a paracompact

Fσ-metrizable space by Claim 6; and idn is continuous by Claim 5. If a subset

A ⊂ Y is closed in (Y,U) and a point y ∈ Y \ A, by Claims 4 in the proof of

Lemma 3.1 and 5, there are n ∈ N and U ∈ Uτn such that y ∈ U ⊂ Y \ A, thus

clYn(A) ⊂ Y \U , and y 6∈ clYn(A) = clYn(idn(A)). This shows the family {idn}n∈N
of continuous mappings separates points from closed sets in (Y,U). A mapping

g : (Y,U)→
∏
n∈N Yn is defined by g(y) = (idn(y))n∈N. By the diagonal theorem

[4, Theorem 2.3.20], the mapping g is an embedding mapping. Hence, (Y,U) is a

µ-space. �
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