
Topology and its Applications 240 (2018) 78–97
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

The kR-property of free Abelian topological groups and products 

of sequential fans

Fucai Lin a,∗,1, Shou Lin a,b, Chuan Liu c

a School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000, PR China
b Institute of Mathematics, Ningde Teachers’ College, Ningde, Fujian 352100, PR China
c Department of Mathematics, Ohio University Zanesville Campus, Zanesville, OH 43701, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 January 2017
Received in revised form 11 March 
2018
Accepted 11 March 2018
Available online 13 March 2018

MSC:
primary 54H11, 22A05
secondary 54E20, 54E35, 54D50, 
54D55

Keywords:
kR-Space
k-Space
Stratifiable space
Lašnev space
k-Network
Free Abelian topological group

A space X is called a kR-space, if X is Tychonoff and the necessary and sufficient 
condition for a real-valued function f on X to be continuous is that the restriction 
of f to each compact subset is continuous. In this paper, we discuss the kR-property 
of products of sequential fans and free Abelian topological groups by applying the 
κ-fan introduced by Banakh. In particular, we prove the following two results:

(1) The space Sω1 × Sω1 is not a kR-space.
(2) The space Sω × Sω1 is a kR-space if and only if Sω × Sω1 is a k-space if and 

only if b > ω1.

These results generalize some well-known results on sequential fans. Furthermore, 
we generalize some results of Yamada on the free Abelian topological groups 
by applying the above results. Finally, we pose some open questions about the 
kR-spaces.

© 2018 Published by Elsevier B.V.

1. Introduction

A topological space X is called a k-space if every subset of X, whose intersection with every compact 
subset K in X is relatively open in K, is open in X. It is well-known that the k-property which generalizes 
metrizability has been studied intensively by topologists and analysts. A space X is called a kR-space, if X
is Tychonoff and the necessary and sufficient condition for a real-valued function f on X to be continuous is 
that the restriction of f to each compact subset is continuous. Clearly every Tychonoff k-space is a kR-space. 
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The converse is false. Indeed, for any uncountable non-measurable cardinal κ the power Rκ is a kR-space 
but not a k-space, see [27, Theorem 5.6] and [16, Problem 7.J(b)]. Now, the kR-property has been widely 
used in the study of topology, analysis and category, see [4,3,5,6,17,21,26].

The results of our research will be presented in two separate papers. In the current paper, we extend 
some well-known results on k-spaces to kR-spaces by applying the κ-fan introduced by Banakh in [3], and 
then seek some applications in the study of free Abelian topological groups. In the subsequent paper [19], 
we study the kR-property in free topological groups.

Let κ be an infinite cardinal. For each α ∈ κ, let Tα be a sequence converging to xα /∈ Tα. Let T =⊕
α∈κ(Tα ∪ {xα}) be the topological sum of {Tα ∪ {xα} : α ∈ κ}. Then Sκ = {x} ∪

⋃
α∈κ Tα is the quotient 

space obtained from T by identifying all the points xα ∈ T to the point x. The space Sκ is called a sequential 
fan. Throughout this paper, for convenience we denote Sω and Sω1 by the following respectively:

Sω = {a0} ∪ {a(n, m) : n, m ∈ ω}, where for each n ∈ ω the sequence a(n, m) → a0 as m → ∞;
Sω1 = {∞} ∪ {x(α, n) : n ∈ ω, α ∈ ω1}, where for each α ∈ ω1 the sequence x(α, n) → ∞ as n → ∞.

The paper is organized as follows. In Section 2, we introduce the necessary notation and terminology 
which are used for the rest of the paper. In Section 3, we investigate the kR-property of products of sequential 
fans. First, we prove that Sω1 × Sω1 is not a kR-space, which generalizes a well-known result of Gruenhage 
and Tanaka. Then we prove that Sω × Sω1 is a kR-space if and only if Sω × Sω1 is a k-space if and only 
if b > ω1. Furthermore, we discuss the topological properties of some class of spaces with the kR-property 
under the assumption of b ≤ ω1. Section 4 is devoted to the study of the kR-property of free Abelian 
topological groups. The main theorems in this section generalizes some results in [18] and [33]. In Section 5, 
we pose some questions about kR-spaces.

2. Preliminaries

In this section, we introduce the necessary notation and terminology. Throughout this paper, all topo-
logical spaces are assumed to be Tychonoff, unless otherwise is explicitly stated. First of all, let N be the 
set of all positive integers and ω the first infinite ordinal. For a space X, we always denote the set of all the 
non-isolated points by NI(X). For undefined notation and terminology, the reader may refer to [2], [8], [11]
and [20].

Let X be a topological space and A ⊆ X be a subset of X. The closure of A in X is denoted by A and 
the diagonal of X is denoted by ΔX . Moreover, A is called bounded if every continuous real-valued function 
f defined on X is bounded on A. The space X is called a k-space provided that a subset C ⊆ X is closed 
in X if C ∩K is closed in K for each compact subset K of X. If there exists a family of countably many 
compact subsets {Kn : n ∈ N} of X such that each subset F of X is closed in X provided that F ∩Kn is 
closed in Kn for each n ∈ N, then X is called a kω-space. A space X is called a kR-space, if X is Tychonoff 
and the necessary and sufficient condition for a real-valued function f on X to be continuous is that the 
restriction of f on each compact subset is continuous. Note that every kω-space is a k-space and every 
Tychonoff k-space is a kR-space. A subset P of X is called a sequential neighborhood of x ∈ X, if each 
sequence converging to x is eventually in P . A subset U of X is called sequentially open if U is a sequential 
neighborhood of each of its points. A subset F of X is called sequentially closed if X \ F is sequentially 
open. The space X is called a sequential space if each sequentially open subset of X is open. The space X
is said to be Fréchet–Urysohn if, for each x ∈ A ⊂ X, there exists a sequence {xn} in A such that {xn}
converges to x.

A space X is called an S2-space (Arens’ space) if

X = {∞} ∪ {xn : n ∈ N} ∪ {xn,m : m,n ∈ ω}
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and the topology is defined as follows: Each xn,m is isolated; a basic neighborhood of xn is {xn} ∪ {xn,m :
m > k}, where k ∈ ω; a basic neighborhood of ∞ is

{∞} ∪ (
⋃

{Vn : n > k}) for some k ∈ ω,

where Vn is a neighborhood of xn for each n ∈ ω.

Definition 2.1. ([3]) Let X be a topological space.

• A subset U of X is called R-open if for each point x ∈ U there is a continuous function f : X → [0, 1]
such that f(x) = 1 and f(X \U) ⊂ {0}. It is obvious that each R-open set is open. The converse is true 
for the open subsets of Tychonoff spaces.

• A subset U of X is called a functional neighborhood of a set A ⊂ X if there is a continuous function 
f : X → [0, 1] such that f(A) ⊂ {1} and f(X \ U) ⊂ {0}. If X is normal, then each neighborhood of a 
closed subset A ⊂ X is functional.

Definition 2.2. Let λ be a cardinal. An indexed family {Xα}α∈λ of subsets of a topological space X is called

• point-countable if for any point x ∈ X the set {α ∈ λ : x ∈ Xα} is countable;
• compact-countable if for any compact subset K in X the set {α ∈ λ : K ∩Xα 
= ∅} is countable;
• locally finite if any point x ∈ X has a neighborhood Ox ⊂ X such that the set {α ∈ λ : Ox ∩Xα 
= ∅}

is finite;
• compact-finite in X if for each compact subset K ⊂ X the set {α ∈ λ : K ∩Xα 
= ∅} is finite;
• strongly compact-finite [3] in X if each set Xα has an R-open neighborhood Uα ⊂ X such that the 

family {Uα}α∈λ is compact-finite;
• strictly compact-finite [3] in X if each set Xα has a functional neighborhood Uα ⊂ X such that the 

family {Uα}α∈λ is compact-finite.

Definition 2.3. ([3]) Let X be a topological space and λ be a cardinal. An indexed family {Fα}α∈λ of subsets 
of a topological space X is called a fan (more precisely, a λ-fan) in X if this family is compact-finite but not 
locally finite in X. A fan {Xα}α∈λ is called strong (resp. strict) if each set Fα has a R-open neighborhood 
(resp. functional neighborhood) Uα ⊂ X such that the family {Uα}α∈λ is compact-finite in X.

If all the sets Fα of a λ-fan {Fα}α∈λ belong to some fixed family F of subsets of X, then the fan will be 
called an Fλ-fan. In particular, if each Fα is closed in X, then the fan will be called a Cldλ-fan.

Clearly, we have the following implications:

strict fan ⇒ strong fan ⇒ fan.

Let P be a family of subsets of a space X. Then, P is called a k-network if for every compact subset 
K of X and an arbitrary open set U containing K in X there is a finite subfamily P ′ ⊆ P such that 
K ⊆

⋃
P ′ ⊆ U . Recall that a space X is an ℵ-space (resp. ℵ0-space) if X has a σ-locally finite (resp. 

countable) k-network. Recall that a space X is said to be Lašnev if it is the continuous closed image of some 
metric space. We list two well-known facts about the Lašnev spaces as follows.

Fact 1: A Lašnev space is metrizable if it contains no closed copy of Sω, see [24].

Fact 2: A Lašnev space is an ℵ-space if it contains no closed copy of Sω1 , see [9] and [14].
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Definition 2.4. ([7]) A topological space X is a stratifiable space if for each open subset U in X, one can 
assign a sequence {Un}∞n=1 of open subsets in X such that the following (a)–(c) hold.

(a) Un ⊂ U ;
(b)

⋃∞
n=1 Un = U ;

(c) Un ⊂ Vn whenever U ⊂ V .

Clearly, each Lašnev space is stratifiable [11].

Definition 2.5. Let X be a Tychonoff space. An Abelian topological group A(X) is called the free Abelian 
topological group over X if A(X) satisfies the following conditions:

(i) there is a continuous mapping i : X → A(X) such that i(X) algebraically generates A(X);
(ii) if f : X → G is a continuous mapping to an Abelian topological group G, then there exists a continuous 

homomorphism f : A(X) → G with f = f ◦ i.

Let X be a non-empty Tychonoff space. Throughout this paper, −X = {−x : x ∈ X}, which is just a 
copy of X. Let 0 be the neutral element of A(X), that is, the empty word. The word g is called reduced if it 
does not contain any pair of symbols of x and −x. It follows that if the word g is reduced and non-empty, 
then it is different from the neutral element 0 of A(X). Clearly, each element g ∈ A(X) distinct from the 
neutral element can be uniquely written in the form g = r1x1 + r2x2 + · · ·+ rnxn, where n ≥ 1, ri ∈ Z \{0}, 
xi ∈ X, and xi 
= xj for i 
= j. In this case, the number 

∑n
i=1 |ri| is said to be the reduced length of g (in 

particular, the neutral element has the reduced length 0), and the support of g = r1x1 + r2x2 + · · ·+ rnxn is 
defined as supp(g) = {x1, · · · , xn}. Given a subset K of A(X), we put supp(K) =

⋃
g∈K supp(g). For every 

n ∈ N, let

in : (X ⊕−X ⊕ {0})n → An(X)

be the natural mapping defined by

in(x1, x2, ...xn) = x1 + x2 + ... + xn

for each (x1, x2, ...xn) ∈ (X ⊕−X ⊕ {0})n.
Let X be a space. For every n ∈ N, An(X) denotes the subspace of A(X) that consists of all the words 

of reduced length at most n with respect to the free basis X.
The reader may refer to [28] for undefined notation and terminology of free groups.

3. The kR-property in sequential fans

In this section we discuss the kR-property of products of sequential fans and generalize some well-known 
results. First, we recall a well-known theorem of Gruenhage and Tanaka as follows:

Theorem 3.1. ([2, Corollary 7.6.23]) The product Sω1 × Sω1 is not a k-space.

Next we generalize this theorem and prove that the product Sω1 × Sω1 is not a kR-space. First of all, we 
give an important lemma.

Lemma 3.2. ([3, Proposition 3.2.1]) A kR-space X contains no strict Cld-fan.
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Now we can prove one of the main results.

Theorem 3.3. The space Sω1 × Sω1 is not a kR-space.

Proof. By Lemma 3.2, it suffices to prove that Sω1 × Sω1 contains a strict Cldω-fan. Next we construct a 
strict Cldω-fan in Sω1 × Sω1 .

It follows from [15, Theorem 20.2] that we can find two families A = {Aα : α ∈ ω1} and B = {Bα : α ∈
ω1} of infinite subsets of ω such that

(a) Aα ∩Bβ is finite for all α, β < ω1;
(b) for no A ⊂ ω, all the sets Aα \A and Bα ∩A, α ∈ ω1 are finite.

For each n ∈ N, put

Xn = {(x(α, n), x(β, n)) : n ∈ Aα ∩Bβ , α, β ∈ ω1}.

It is obvious that (∞, ∞) /∈
⋃

n∈N
Xn. However, it follows from the proof of [2, Lemma 7.6.22] that (∞, ∞) ∈⋃

n∈N
Xn but not for any countable subset of 

⋃
n∈N

Xn, which implies that the family {Xn :∈ N} is not 
locally finite in Sω1 × Sω1 . Moreover, it is easy to see that each Xn is closed and discrete in Sω1 × Sω1 . We 
claim that the family {Xn : n ∈ N} is compact-finite in Sω1 × Sω1 . Indeed, let K be an any compact subset 
of Sω1 × Sω1 . It is easy to see that there exists a finite subset {αi ∈ ω1 : i = 1, · · · , m} of ω1 such that

K ∩
⋃

n∈N

Xn ⊂ (
m⋃

i=1
{x(αi, n) : n ∈ N}) × (

m⋃

i=1
{x(αi, n) : n ∈ N}).

Assume that K intersects infinitely many Xn. Then there exist 1 ≤ i, j ≤ m and an infinite subset {nk :
k ∈ N} in N such that

{x(αi, nk), x(αj , nk) : k ∈ N} ⊂ K ∩ (
⋃

n∈N

Xn).

It is obvious that

(∞,∞) ∈ {x(αi, nk), x(αj , nk) : k ∈ N}.

However, since the point (∞, ∞) does not belong to the closure of any countable subset of 
⋃

n∈N
Xn in 

Sω1 × Sω1 , we obtain a contradiction.
Since Xn is also a functional neighborhood of itself for each n ∈ N, the space Sω1 × Sω1 contains a strict 

Cldω-fan {Xn : n ∈ N}. �
Next we prove the second main result in this section. First, we recall some concepts.
Consider ωω, the collection of all functions from ω to ω. For any f, g ∈ ωω, define f ≤ g if f(n) ≤ g(n)

for all but finitely many n ∈ ω. A subset H of ωω is bounded if there is a g ∈ ωω such that f ≤ g for all 
f ∈ H , and is unbounded otherwise. We denote by b the smallest cardinality of an unbounded family in 
ωω. It is well-known that ω < b ≤ c, where c denotes the cardinality of the continuum. Let F be the set of 
all finite subsets of ω.

In [10], Gruenhage proved that ω1 < b if and only if the product Sω × Sω1 is a k-space. Indeed, we have 
the following result.
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Theorem 3.4. The following statements are equivalent.

(1) b > ω1.
(2) The product Sω × Sω1 is a kR-space.
(3) The product Sω × Sω1 is a k-space.

Proof. By Gruenhage’s result, it suffices to prove (2) ⇒ (1). Assume that b ≤ ω1. Then there exists a 
subfamily {fα ∈ ωω : α < ω1} such that for any g ∈ ωω there exists α < ω1 such that fα(n) > g(n) for 
infinitely many n’s. For each α < ω1, put

Gα = {(a(n,m), x(α,m)) : m ≤ fα(n), n ∈ ω}.

Obviously, each Gα is clopen in Sω ×Sω1 . Moreover, it is easy to see that the family {Gα}α<ω1 of subsets is 
compact-finite. However, the family {Gα}α<ω1 is not locally finite at the point (a0, ∞) in Sω ×Sω1 . Indeed, 
since each Gα is clopen in Sω × Sω1 and (a0, ∞) /∈ Gα, it suffices to prove that (a0, ∞) ∈

⋃
α<ω1

Gα. Take 
an arbitrary open neighborhood U at (a0, ∞) in Sω × Sω1 . Then there exists f ∈ ωω and g ∈ ω1ω such that

({a0} ∪ {a(n,m) : m ≥ f(n), n ∈ ω}) × ({∞} ∪ {x(α,m) : m ≥ g(α), α < ω1}) ⊂ U.

Therefore, there exists α < ω1 such that fα(n) > f(n) for infinitely many n’s, then there is a j ∈ ω such 
that j ≥ g(α) and fα(j) > f(j), which shows (a(j, fα(j)), x(α, j)) ∈ U ∩Gα. By the arbitrary choice of U , 
the point (a0, ∞) is in 

⋃
α<ω1

Gα.
Since Sω × Sω1 is normal and each Gα is clopen in Sω × Sω1 , each Gα is also a functional neighborhood 

of itself. Therefore, it follows from Lemma 3.2 that Sω × Sω1 is not a kR-space, which is a contradiction. 
Hence b > ω1. �
Note 3.5. If b ≤ ω1, then some classes of spaces with the kR-property have some special topological proper-
ties, see the following Theorem 3.9. In order to prove this theorem, we need some concepts and technique 
lemmas. Yamada in [33] introduced the following spaces.

Let T be a class of metrizable spaces such that each element P of T can be represented as P = X0 ∪⋃∞
i=1 Xi satisfying the following conditions:

(1) Xi is an infinite discrete open subspace of P for every i ∈ N,
(2) the family {Xi : i ∈ ω} is pairwise disjoint, and
(3) X0 is a compact subspace of P , and {Vk = X0 ∪

⋃∞
i=k Xi : k ∈ N} is a neighborhood base at X0 in P .

In the above definition, if each Xi consists of countably many elements and X0 is a one-point set, we 
denote the space by P0. Indeed, the space P0 is commonly known as the metrizable countable hedgehog. 
We put C = { 1

n : n ∈ N} ∪ {0} with the subspace topology of I. Let

G0 =
⊕

{Ci : i ∈ N}
⊕

P0,

where each Ci is a copy of C for each i ∈ N. Let

G1 =
⊕

{Cα : α < ω1},

where Cα = {c(α, n) : n ∈ N} ∪ {cα} with c(α, n) → cα as n → ∞ for each α ∈ ω1.
From here on, we shall use the notations T, P0, G0 and G1 with the meaning as the above meaning.
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Lemma 3.6. The space Sω × P is not a kR-space for each space P in T.

Proof. Fix an arbitrary space P in T. Then P can be represented as X0 ∪
⋃∞

i=1 Xi satisfying (1)–(3) in 
the above definition. Obviously, Sω × P is a normal space. By Lemma 3.2, it suffices to prove that Sω × P

contains a strict closedω-fan.
For each n ∈ N, take an arbitrary countably infinite and pairwise disjoint subset {b(n, m) : m ∈ N} of 

Xn. For each n ∈ N, put

Fn = {(a(n,m), b(n,m)) : m ∈ N}.

Obviously, each Fn is closed. We claim that the family {Fn} is compact-finite in Sω × P . Indeed, for each 
compact subset K in Sω × P , there exist compact subsets K1 and K2 in Sω and P respectively such that 
K ⊂ K1 ×K2. Since K1 is compact in Sω, there exists a natural number n0 such that

K1 ⊂ {a(n,m) : n ≤ n0 ,m ∈ ω} ∪ {a0}.

Therefore, K ∩ Fn = ∅ for each n > n0.
It is easy to see that

∅ 
=
⋃

n∈N

Fn \
⋃

n∈N

Fn ⊂ {a0} ×X0.

Hence the family {Fn} is not locally finite at Sω × P . Since Sω × P is a normal ℵ-space, it follows from 
[3, Proposition 2.9.2] that the family {Fn} is strongly compact-finite, and then by the normality the family 
{Fn} is also strictly compact-finite.

Therefore, the family {Fn} is a strict closedω-fan in Sω × P . �
Proposition 3.7. Let Sω × Z be a kR-space, where Z is a stratifiable space. If {Zn} is a decreasing network 
for some point z0 in Z, then the closure of Zn is compact for some n.

Proof. If not, then each Zn is not compact and thus not countably compact. Hence there exist a sequence 
{nk} in N and the family {Ck} of countably infinite, discrete and closed subsets of Z such that Ck ⊂ Znk

\{z0}
for each k ∈ N, and the family {Ck} is pairwise disjoint. Put

Z0 = {z0} ∪
⋃

k∈N

Ck.

It is easy to see that Z0 belongs to T and is closed in Z. Since Z is stratifiable, Sω ×Z is stratifiable, hence 
Sω × Z0 is stratifiable. By [4, Proposition 5.10], Sω × Z0 is a kR-subspace by the assumption. However, it 
follows from Lemma 3.6 that Sω ×Z0 is not a kR-subspace, which is a contradiction. Therefore, there exists 
n ∈ N such that the closure of Zn is compact. �

By Proposition 3.7, we have the following corollary.

Corollary 3.8. Let X be a stratifiable space with a point-countable k-network. If Sω ×X is a kR-space, then 
X has a point-countable k-network consisting of sets with compact closures.

Let X and Y be two topological spaces. We recall that the pair (X, Y ) satisfies the Tanaka’s conditions
[31] if one of the following (1)–(3) hold:
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(1) Both X and Y are first-countable;
(2) Both X and Y are k-spaces, and X or Y is locally compact2;
(3) Both X and Y are locally kω-spaces.3

Theorem 3.9. Assume b ≤ ω1, then the following statements hold.

(1) If X is a stratifiable k-space with a point-countable k-network and Sω × X is a kR-space, then X is 
a locally σ-compact space; in particular, if X has a compact-countable k-network then X is a locally 
kω-space.

(2) If X is a stratifiable k-space with a point-countable k-network and Sω1 ×X is a kR-space, then X is a 
locally compact space.

(3) If both X and Y are stratifiable k-spaces with a compact countable k-network, then X×Y is a kR-space 
if and only if the pair (X, Y ) satisfies the conditions of Tanaka.

Proof. By Theorem 3.4, we see that Sω × Sω1 is not a kR-space.

(1) Assume that X is a stratifiable k-space and Sω ×X is a kR-space. By Corollary 3.8, it follows that X
has a point-countable k-network consisting of sets with compact closures. We claim that there is no closed 
copy H of X such that H is the inverse image of Sω1 under some perfect mapping. Assume to the contrary 
that there exist a closed subspace H of X and a perfect mapping f : H → Sω1 from H onto Sω1 . Then it 
is easy to see that the mapping idSω

× f : Sω ×H → Sω × Sω1 is also an onto perfect mapping. Moreover, 
Sω × H is a kR-space since Sω × X is a stratifiable kR-space. Since the kR-property is preserved by the 
perfect mappings, Sω × Sω1 is a kR-space, which is a contradiction.

Since X is a k-space with a point-countable k-network consisting of sets with compact closures, it follows 
from [23, Lemma 1.3] that X contains no closed copy subspace of X such that it is the inverse image of Sω1

under some perfect mapping if and only if X is a locally σ-compact space, thus X is a locally σ-compact 
space.

If X has a compact-countable k-network, then X is a locally ℵ0-space. Then X is a locally kω-space since 
X is a k-space.

(2) Assume that X is a stratifiable k-space and Sω1 ×X is a kR-space. Moreover, since Sω ×Sω1 is not a 
kR-space, it is easy to see that X contain no closed copies of S2 and Sω. Then X is first-countable by [22, 
Corollary 3.9] since X is a k-space with a point-countable k-network. Since Sω ×X is a closed subspace of 
the stratifiable space Sω1 ×X, the subspace Sω ×X is a kR-space. By Corollary 3.8, it follows that X has 
a point-countable k-network consisting of sets with compact closures. Then it follows from [25, Lemma 2.1]
and the first-countability of X that X is locally compact.

(3) Assume that both X and Y are stratifiable k-spaces with a compact-countable k-network. Obviously, 
it suffices to prove that if X × Y is a kR-space then (X, Y ) satisfies the conditions of Tanaka. We divide 
the proof into the following cases.

Case 1: Both X and Y contain no closed copies of S2 and Sω.

Since both X and Y are k-spaces, it follows from [22, Corollary 3.9] that X and Y are all first-countable. 
Therefore, the pair (X, Y ) satisfies the conditions of Tanaka.

Case 2: Both X and Y contain closed copies of S2 or Sω.

Then both Sω × Y and X × Sω are locally kω-spaces by (1). Therefore, the pair (X, Y ) satisfies the 
conditions of Tanaka.

2 A space X is called locally compact if every point of X has a compact neighborhood.
3 A space X is called locally kω if every point of X has a kω-neighborhood.
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Case 3: The space X contains a closed copy of S2 or Sω and Y contains no closed copies of S2 and Sω.
Then Y is first-countable by [22, Corollary 3.9] and Sω × Y is a kR-space since X × Y is stratifiable. By 

Corollary 3.8, it follows that Y has a compact-countable k-network consisting of sets with compact closures. 
Then it follows from [25, Lemma 2.1] and the first-countability of Y that Y is locally compact. Therefore, 
the pair (X, Y ) satisfies the conditions of Tanaka.

Case 4: The space Y contains a closed copy of S2 or Sω and X contains no closed copies of S2 and Sω.
The proof is the same as the proof of Case 3. �

Corollary 3.10. Assume b ≤ ω1, then the following statements hold.

(1) If X is a Lašnev space and Sω ×X is a kR-space, then X is a locally kω-space.
(2) If X is a Lašnev space and Sω1 ×X is a kR-space, then X is a locally compact space.
(3) If X and Y are Lašnev spaces, then X × Y is a kR-space if and only if the pair (X, Y ) satisfies the 

conditions of Tanaka.

Theorem 3.11. Let X be a stratifiable space such that X2 is a kR-space. If X satisfies one of the following 
conditions, then either X is metrizable or X is the topological sum of kω-subspaces.

(1) X is a k-space with a compact-countable k-network;
(2) X is a Fréchet–Urysohn space with a point-countable k-network.

Proof. First, suppose that X is a k-space with a compact-countable k-network. We divide the proof into 
the following three cases.

Case 1.1: The space X contains a closed copy of Sω.
Since Sω ×X is a closed subspace of the stratifiable space X2, it follows from [4, Proposition 5.10] that 

Sω × X is a kR-space. By Proposition 3.7, the space X has a compact-countable k-network consisting of 
sets with compact closures P. Then P is star-countable, hence it follows from [13] that we have

P =
⋃

α∈A

Pα,

where each Pα is countable and (
⋃

Pα) ∩ (
⋃

Pβ) = ∅ for any α 
= β ∈ A. For each α ∈ A, put 
Xα =

⋃
Pα. Since P is a k-network, it is easy to see that the family {Xα : α ∈ A} is compact-finite in X. 

Put P = {P : P ∈ P}. We claim that P is star-countable, hence P is compact-countable since P is a 
k-network in X.

Suppose not, there exists a P ∈ P and an uncountable subfamily {Pα : α < ω1} of P such that 
P ∩ Pα 
= ∅ for each α < ω1. Without loss of generality, we may assume that Pα ∈ Pα for each α < ω1. 
Since each Pα is metrizable, there exists a non-trivial sequence Tα in Pα converging to some point in P . 
Without loss of generality, we may assume that P ∩ Tα = ∅ for each α < ω1. Let F = P ∪

⋃
α<ω1

Tα. Since 
X is a k-space and the family {Tα : α < ω1} is compact-finite, the set F is closed in X. Let f : F → F/P

be the natural quotient mapping. Then f is perfect and F/P is homeomorphic to Sω1 , hence F 2 is the 
inverse image of (Sω1)2 under a perfect mapping. By Theorem 3.3, (Sω1)2 is not a kR-space, thus F 2 is not 
a kR-space. However, since X is a stratifiable space and F is closed in X, the subspace F 2 is a kR-space, 
which is a contradiction.

Therefore, without loss of generality, we may assume that P is a compact-countable compact k-network 
of X. Obviously, each Xα is a closed k-subspace of X and has a countable compact k-network Pα. Moreover, 
we claim that each Xα is open in X. Indeed, fix an arbitrary α ∈ A. Since X is a k-space, it suffices to 
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prove that 
⋃
{Xβ : β ∈ A, β 
= α} ∩K is closed in K for each compact subset K in X. Take an arbitrary 

compact subset K in X. Since P is a k-network of X, there exists a finite subfamily P ′ ⊂ P such that 
K ⊂

⋃
P ′. Then

⋃
{Xβ : β ∈ A, β 
= α} ∩K =

⋃
{Xβ : β ∈ A, β 
= α} ∩K ∩

⋃
P ′

= K ∩ {P : P ∈ P ′, P /∈ Pα}.

Since each element of P ′ is compact, the set 
⋃
{Xβ : β ∈ A, β 
= α} ∩ K is closed in K. Therefore, 

X =
⊕

α∈A Xα and each Xα is a kω-subspace of X. Thus X is the topological sum of kω-subspaces.
Case 1.2: The space X contains a closed copy of S2.
Obviously, S2 × X is a kR-space. Since Sω is the image of S2 under the perfect mapping and the 

kR-property is preserved by the quotient mapping, Sω × X is a kR-space. By Case 1.1, X is the topo-
logical sum of kω-subspaces.

Case 1.3: The space X contains no copy of Sω or S2.
Since X is a k-space with a point-countable k-network, it follows from [36, Lemma 8] and [22, Corol-

lary 3.10] that X has a point-countable base, and thus X is metrizable since a stratifiable space with a 
point-countable base is metrizable [11].

Finally, let X be a Fréchet–Urysohn space with a point-countable k-network. We divide the proof into 
the following two cases

Case 2.1: The space X contains a closed copy of Sω or S2.
By Case 1.2, without loss of generality we may assume that X contains a closed copy of Sω. By Proposi-

tion 3.7, the space X has a point-countable k-network consisting of sets with compact closures. Since X is 
a regular Fréchet–Urysohn space, it follows from [29, Corollary 3.6] that X is a Lašnev space, hence X has 
a compact-countable k-network. By Case 1.1, the space X is the topological sum of kω-subspaces.

Case 2.2: The space X contains no copy of Sω or S2.
It follows from [36, Lemma 8] and [22, Corollary 3.10] that X has a point-countable base. Then X is 

metrizable since a stratifiable space with a point-countable base is metrizable [11]. �
Remark 3.12. By the proof of Theorem 3.11, the condition (2) implies (1) in Theorem 3.11, and furthermore 
X2 is a k-space.

4. The applications to free Abelian topological groups

In this section, we mainly discuss the kR-property in the free Abelian topological groups. Recently, 
T. Banakh in [3] proved that A(X) is a k-space if A(X) is a kR-space for a Lašnev space X. Indeed, he 
obtained this result in wider classes of spaces. However, he did not discuss the following question:

Question 4.1. Let X be a space. For some n ∈ ω, if An(X) is a kR-space, is An(X) a k-space?

We shall give some answers to the above question and generalize some results of Yamada in the free 
Abelian topological groups. First, we give a characterization for some class of spaces such that A2(X) is a 
kR-space if and only if A2(X) is a k-space.

Theorem 4.2. Let X be a stratifiable Fréchet–Urysohn space with a point-countable k-network. Then the 
following statements are equivalent:
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(1) A2(X) is a k-space;
(2) A2(X) is a kR-space;
(3) the space X is metrizable or X is a locally kω-space.

Proof. Obviously, we have (1) ⇒ (2). It suffices to prove (3) ⇒ (1) and (2) ⇒ (3).
(3) ⇒ (1). Since (X ∪ {0} ∪ (−X))2 is a k-space and i2 is a closed mapping, A2(X) is a k-space.
(2) ⇒ (3). Use the same notations as in Theorem 3.3. First we claim that X contains no copy of Sω1 . 

If not, let Yn = i2(Xn) for each n ∈ N. Since the family {Xn} is a strict Cldω-fan, it follows from [3, 
Proposition 3.4.3] that the family {Yn} is a strict Cldω-fan, which implies that A2(X) is not a kR-space, 
a contradiction. Therefore, X contains no closed copy of Sω1 .

If X contains no close copy of Sω, then it follows from [36, Lemma 8] and [22, Corollaries 3.9 and 3.10]
that X has a point-countable base, thus it is metrizable since X is stratifiable [11]. Therefore, we may assume 
that X contains a closed copy of Sω. Next we prove that X is a locally kω-space. Indeed we claim that 
X contains no closed subspace belonging to T. Assume to the contrary that X contains a closed subspace 
P ∈ T. By the proof of Lemma 3.6, X × X contains a closed Cldω-fan. Since X is an ℵ-space, it follows 
from [3, Proposition 2.9.2] and the normality of (X ∪ {0} ∪ (−X))2 that (X ∪ {0} ∪ (−X))2 contains a 
strict Cldω-fan. Since i2 is a closed mapping, it follows from [3, Proposition 3.4.3] that A2(X) contains a 
strict Cldω-fan, which is a contradiction. Hence X contains no closed subspace belonging to T, which means 
that every first-countable subspace is locally compact. Then it follows from [25, Lemma 2.1] that X has 
a point-countable k-network whose elements have compact closures. Finally, since X is a Fréchet–Urysohn 
space with a point-countable k-network, it follows from [23, Corollary 2.12] or [20, Corollary 5.4.10] that X
is a locally kω-space if and only if X contains no closed copy of Sω1 , thus X is a locally kω-space. �
Note 4.3. By Theorem 4.2, it follows that A2(Sω1) is not a kR-space.

Lemma 4.4. Let A(X) be a kR-space. If each An(X) is a normal k-space, then A(X) is k-space.

Proof. It is well-known that each compact subset of A(X) is contained in some An(X) [2, Corollary 7.4.4]. 
Hence it follows from [17, Lemma 2] that A(X) is a k-space. �
Theorem 4.5. Let X be a paracompact σ-space.4 Then A(X) is a kR-space and each An(X) is a k-space if 
and only if A(X) is a k-space.

Proof. Since X is a paracompact σ-space, it follows from [2, Theorem 7.6.7] that A(X) is also a paracompact 
σ-space, hence each An(X) is normal. Now apply Lemma 4.4 to conclude the proof. �

In [33], Yamada proved that A4(G1) is not a k-space. Indeed, we prove that A4(G1) is not a kR-space.
Suppose that UX is the universal uniformity of a space X. Fix an arbitrary n ∈ N. For each U ∈ UX let

Wn(U) = {x1 − y1 + x2 − y2 + · · · + xk − yk : (xi, yi) ∈ U for i = 1, · · · , k, k ≤ n},

and Wn = {Wn(U) : U ∈ UX}. Then the family Wn is a neighborhood base at 0 in A2n(X) for each n ∈ N, 
see [33,34].

Proposition 4.6. The subspace A4(G1) is not a kR-space.

4 A regular space X is called a σ-space if it has a σ-locally finite network.
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Proof. It suffices to prove that A4(G1) contains a strict Cldω-fan. Let A = {Aα : α ∈ ω1} and B = {Bα :
α ∈ ω1} be two families of infinite subsets of ω as in the proof of Theorem 3.3. For each n ∈ N, put

Xn = {c(α, n) − cα + c(β, n) − cβ : n ∈ Aα ∩Bβ , α, β ∈ ω1}.

It suffices to prove the following three statements.
(1) The family {Xn} is strictly compact-finite in A4(G1).
Since G1 is a Lašnev space, it follows from [2, Theorem 7.6.7] that A(G1) is also a paracompact σ-space, 

hence A4(G1) is paracompact (and thus normal). Hence it suffices to prove that the family {Xn} is strongly 
compact-finite in A4(G1). For each α ∈ ω1 and n ∈ N, let Cn

α = Cα \ {c(α, m) : m ≤ n}, and put

Un = {c(α, n) − x + c(β, n) − y : n ∈ Aα ∩Bβ , α, β ∈ ω1, x ∈ Cn
α , y ∈ Cn

β }.

Obviously, each Xn ⊂ A4(G1) \ A3(G1). Since A4(G1) \ A3(G1) is open in A4(G1), it follows from [2, 
Corollary 7.1.19] that each Un is open in A4(G1). We claim that the family {Un} is compact-finite in 
A4(G1). If not, then there exist a compact subset K in A4(G1) and a subsequence {nk} in N such that 
K ∩ Unk


= ∅ for each k ∈ N. For each k ∈ N, choose an arbitrary point

zk = c(αk, nk) − xk + c(βk, nk) − yk ∈ K ∩ Unk
,

where xk ∈ Cnk
αk

and yk ∈ Cnk

βk
. Since A4(G1) is paracompact, it follows from [1] that the closure of the set 

supp(K) is compact in G1. Therefore, there exists N ∈ N such that

supp(K) ∩
⋃

{Cα : α ∈ ω1 \ {γi ∈ ω1 : i ≤ N}} = ∅,

that is, supp(K) ⊂
⋃

α∈{γi∈ω1:i≤N} Cα. Since each zk ∈ K, there exists

αk, βk ∈ {γi ∈ ω1 : i ≤ N}

such that Aαk
∩Bβk

is an infinite set, which is a contradiction since Aα ∩Bβ is finite for all α, β < ω1.
(2) Each Xn is closed in A4(G1).
Fix an arbitrary n ∈ N. Next we prove that Xn is closed in A4(G1). Let Z = supp(Xn). The set Z

is a closed discrete subset of G1. Since G1 is metrizable, it follows from [32] that A(Z) is topologically 
isomorphic to a closed subgroup of A(G1), hence A4(Z) is a closed subspace of A4(G1). Since A(Z) is 
discrete and Xn ⊂ A4(Z), the set Xn is closed in A4(Z) (and thus closed in A4(G1)).

(3) The family {Xn} is not locally finite at the point 0 in A4(G1).
Indeed, it suffices to prove that 0 ∈

⋃
n∈N

Xn\
⋃

n∈N
Xn. Take an arbitrary U that belongs to the universal 

uniformity on G1. We shall prove W2(U) ∩
⋃

n∈N
Xn 
= ∅.

Indeed, we can choose a function f : ω1 → ω such that

V = ΔG1 ∪
⋃

α∈ω1

Cf(α)
α × Cf(α)

α ⊂ U.

For each α < ω1, put

A′
α = {n ∈ Aα : n ≥ f(α)}

and
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B′
α = {n ∈ Bα : n ≥ f(α)}.

By the condition (b) of the families A and B, it is easy to see that there exist α, β ∈ ω1 such that 
A′

α ∩B′
β 
= ∅. So, choose n ∈ A′

α ∩B′
β . Then both (c(α, n), cα) and (c(β, n), cβ) belong to V , thus

c(α, n) − cα + c(β, n) − cβ ∈ W2(V ) ⊂ W2(U),

which shows W2(U) ∩Xn 
= ∅ (and thus W2(U) ∩
⋃

n∈N
Xn 
= ∅). �

Lemma 4.7. Let X be a space. For each n ∈ N, the subspace A2n−1(X) of A(X) contains a closed copy 
of Xn.

Proof. Let the mapping f : Xn → A(X) defined by

f(x1, · · · , xn) = x1 + 2x2 + · · · + 2n−1xn

for each (x1, · · · , xn) ∈ Xn. It follows from the proof of [2, Corollary 7.1.16] that f is a homeomorphic 
mapping from Xn onto f(Xn). Then A2n−1(X) contains a closed copy of Xn. �

Now we can prove the following one of the main results in this paper.

Theorem 4.8. Let X be a non-metrizable stratifiable k-space with a compact-countable k-network. Then the 
following statements are equivalent:

(1) A(X) is a sequential space;
(2) A(X) is a kR-space;
(3) each An(X) is a kR-space;
(4) A4(X) is a kR-space;
(5) the space X is the topological sum of a kω-space and a discrete space.

Proof. The implications of (1) ⇒ (2) and (3) ⇒ (4) are trivial. Since X is stratifiable, A(X) is a stratifiable 
space by [30]. By [4, Proposition 5.10], the implication of (2) ⇒ (3) holds. It suffices to prove (5) ⇒ (1) and 
(4) ⇒ (5).

(5) ⇒ (1). Let X = Y
⊕

D, where Y is a kω-space and D a discrete space. It is well-known that A(X)
is topologically isomorphic to A(Y ) ×A(D). Since A(Y ) is a kω-space by [2, Theorem 7.4.1] and A(D) is a 
discrete space, it follows that A(X) is a k-space (and thus a sequential space).

(4) ⇒ (5). First, we show the following claim.

Claim 1. The subspace NI(X) is ω1-compact.5

If not, then there exists a closed, discrete and uncountable subset {xα : α < ω1} in NI(X). Since X
is paracompact and NI(X) is closed in X, there is an uncountable and discrete collection of open subsets 
{Uα : α < ω1} in X such that xα ∈ Uα for each α < ω1. For each α < ω1, since X is sequential and X \{xα}
is not sequentially closed, there exists a non-trivial sequence {x(n, α) : n ∈ N} converging to xα in X. For 
each α < ω1, let

Cα = {x(n, α) : n ∈ N} ∪ {xα}

5 Recall that a space is called ω1-compact if every uncountable subset of X has a cluster point.
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and put

Z =
⋃

{Cα : α < ω1}.

Obviously, Z is homeomorphic to G1. Without loss of generality, we may assume that Z = G1. Since G1 is a 
closed subset of X and X is a Lašnev space, it follows from [32] that the subspace A4(G1) is homeomorphic 
to a closed subset of A4(X), thus A4(G1) is a kR-subspace. However, by Proposition 4.6, the subspace 
A4(G1) is not a kR-subspace, which is a contradiction. Therefore, Claim 1 holds.

By the stratifiability of X, each compact subset of X is metrizable [11]. Then it follows from Theorem 3.11
and Lemma 4.7 that X is the topological sum of a family of kω-spaces. Let X =

⊕
α∈A Xα, where each Xα

is a kω-space. Let

A′ = {α ∈ A : Xα is non-discrete}.

By Claim 1, the set A′ is countable, hence X is the topological sum of a kω-space and a discrete space. �
Remark 4.9. The space X is a non-metrizable space in Theorem 4.8. It is natural to ask what happen 
when X is a metrizable space. Now we give an answer to this question, see Theorem 4.11 below. First we 
generalize a result of Yamada in [33], where Yamada proved that A3(G0) is not a k-space. Indeed, we prove 
that A3(G0) is not a kR-space.

Proposition 4.10. The subspace A3(G0) is not a kR-space.

Proof. Let G0 =
⊕

{Ci : i ∈ N} 
⊕

P0, where Ci = {c(i, m) : m ∈ N} ∪ {ci} is a convergent sequence with 
the limit point ci for each i ∈ N, and let {y0} ∪ {y(n, m) : n, m ∈ N} be a closed copy of P0 in G0, where 
the set {y(n, m) : m ∈ N} is discrete and open in G0 for each n ∈ N. Since A3(G0) is a normal ℵ0-space, 
it follows from [3, Proposition 2.9.2] that each compact-finite family is strongly compact-finite, hence by 
the normality the compact-finite family is also strictly compact-finite. Therefore, it suffices to prove that 
A3(G0) contains a Cldω-fan.

For each n ∈ N, put

Fn = {cn − c(n,m) + y(n,m) : m ∈ N}.

We claim that the family {Fn} is a Cldω-fan in A3(G0). We divide the proof into the following statements.
(1) Each Fn is closed in A3(G0).
Fix an arbitrary n ∈ N. Indeed, let

Xn = supp(Fn) = Cn ∪ {y(n,m) : m ∈ N}.

Clearly, Xn is closed in G0, thus A(Xn) is topologically isomorphic to a closed subgroup of A(G0). Hence 
A3(Xn) is closed in A3(G0). Since Fn ⊂ A3(Xn), it suffices to prove that Fn is closed in A3(Xn). By [35, 
Theorem 4.5], A3(Xn) is metrizable. Assume to the contrary that there exists a g ∈ A3(Xn) such that 
g ∈ Fn

A3(Xn) \Fn, then there exists a sequence {cn − c(n, mk) + y(n, mk)} in Fn converging to g. Since Xn

is paracompact, the closure of the set

supp({g} ∪ {cn − c(n,mk) + y(n,mk) : k ∈ N})

is compact. However, the set
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supp({g} ∪ {cn − c(n,mk) + y(n,mk) : k ∈ N})

contains a closed infinite discrete subset {y(n, mk) : k ∈ N}, which is a contradiction. Therefore, Fn is closed 
in A3(Xn) (and thus closed in A3(G0)).

(2) The family {Fn} is compact-finite in A3(G0).
Assume to the contrary that there exist a compact subset K in A3(G0) and an increasing sequence {ni :

i ∈ N} in N such that K∩Fni

= ∅ for each i ∈ N. For each i ∈ N, choose a point cni

−c(ni, m(i)) +y(ni, m(i)). 
Moreover, since A3(G0) is paracompact, the closure of the set supp(K) is compact. However, the set 
{cni

: i ∈ N} ⊂ supp(K), which is a contradiction.
(3) The family {Fn} is not locally finite at the point y0 in A3(G0).
Clearly, it suffices to prove that y0 ∈

⋃
n∈N

Fn\
⋃

n∈N
Fn. Indeed, this was proved in [33, Theorem 3.4]. �

Theorem 4.11. If X is a metrizable space, then the following statements are equivalent:

(1) An(X) is a k-space for each n ∈ N;
(2) A4(X) is a k-space;
(3) each An(X) is a kR-space;
(4) A4(X) is a kR-space;
(5) either X is locally compact and the set NI(X) is separable, or NI(X) is compact.

Proof. The equivalences of (1), (2) and (5) were proved in [33, Theorem 4.2]. Clearly, (1) ⇒ (3) and (3) ⇒
(4). It suffices to prove (4) ⇒ (5).

Assume that A4(X) is a kR-space. By Claim 1 of the proof in Theorem 4.8, we see that NI(X) is separable. 
Assume that X is not locally compact and NI(X) is not compact. Then we can take an infinite discrete 
sequence {cn ∈ NI(X) : n ∈ N} in X. For each n ∈ N, since cn ∈ NI(X), there exists a convergent sequence 
{c(n, m) : m ∈ N} in X which converges to cn, and put

Cn = {c(n,m) : m ∈ N} ∪ {cn}.

Moreover, since X is not locally compact, there exists a closed copy of P0 in X. Let

{y0} ∪ {y(n,m) : n,m ∈ N}

be a closed copy of P0 in X, where the set {y(n, m) : m ∈ N} is discrete and open in G0 for each n ∈ N. 
Without loss of generality, we may assume that the collection

{{y0} ∪ {y(n,m) : n,m ∈ N}} ∪ {Cn : n ∈ N}

is discrete in X. Let

Y = {y0} ∪ {y(n,m) : n,m ∈ N} ∪
⋃

{Cn : n ∈ N}.

Then Y is homeomorphic to G0. Hence, by Proposition 4.10, A3(G0) is not a kR-space, which shows that 
A3(Y ) is not a kR-space. Since Y is closed in X and X is metrizable, A3(Y ) is embedded into A3(X)
as a closed subspace. Since A(X) is stratifiable, it follows from [4, Proposition 5.10] that A3(X) is not a 
kR-space. Then, by the same fact, A4(X) is not a kR-space, which is a contradiction. �

By the proof of Theorem 4.11, we have the following theorem.



F. Lin et al. / Topology and its Applications 240 (2018) 78–97 93
Theorem 4.12. If X is a metrizable space, then the following statements are equivalent:

(1) A3(X) is a k-space;
(2) A3(X) is a kR-space;
(3) either X is locally compact or NI(X) is compact.

Proof. The equivalence of (1) and (3) was proved in [33, Theorem 4.9], and (1) ⇒ (2) is obvious. The proof 
of Theorem 4.11 implies (2) ⇒ (3). �

For each space X, the subspace A3(X) contains a closed copy of X ×X by Lemma 4.7, hence it follows 
from Theorems 3.11 and 4.12 that we have the following corollary.

Corollary 4.13. Let X be a stratifiable k-space with a compact-countable k-network. If A3(X) is a kR-space, 
then X satisfies one of the following (a)–(c):

(a) X is a locally compact metrizable space;
(b) X is a metrizable space with the set of all non-isolated points being compact;
(c) X is the topological sum of kω-subspaces.

Theorem 4.14. Assume b = ω1. Let X be a stratifiable k-space with a compact-countable k-network. If A3(X)
is a kR-space, then A3(X) is a k-space.

Proof. Since A3(X) is a kR-space, it follows from Lemma 4.7 that X2 is a kR-space. By Theorem 3.11, 
either X is metrizable or X is the topological sum of kω-subspaces. If X is a metrizable space, then it 
follows from Theorem 4.12 that A3(X) is a k-space. Now we may assume that X is a non-metrizable space 
being the topological sum of kω-subspaces. Moreover, by the assumption of b = ω1, there exists a collection 
{fα ∈ ωω : α < ω1} such that if f ∈ ωω, then there exists α < ω1 with fα(n) > f(n) for infinitely may 
n ∈ ω. Now we shall prove that A3(X) is a k-space.

Indeed, it suffices to prove that NI(X) is ω1-compact. Assume to the contrary that the subspace NI(X) is 
not ω1-compact. Since X is sequential, we can see that X contains a closed copy of G1 =

⊕
{Cα : α < ω1}, 

where for each α ∈ ω1 the set

Cα = {c(α, n) : n ∈ ω} ∪ {cα}

and c(α, n) → cα as n → ∞. Next we divide the proof into the following two cases.
Case 1: The space X contains no closed copy of Sω.
If X contains no closed copy of S2. Then it follows from [22, Corollaries 2.13 and 3.10] and [36, Lemma 8]

that X has a point-countable base, thus X is metrizable since a stratifiable space with a point-countable 
base is metrizable [11], which is a contradiction. Therefore, we may assume that X contains a closed copy 
of S2. Put

X1 = {∞} ∪
⋃

n∈ω

Dn,

where Dn = {xn} ∪ {xn(m) : m ∈ ω} for each n ∈ ω. For each n, k ∈ ω, put

Dk
n = {xn} ∪ {xn(m) : m > k}.

We endow X1 with a topology as follows: each xn(m) is isolated; the family {Dk
n} is a neighborhood base 

at the point xn for each n ∈ ω; a basic neighborhood of ∞ is
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N(f, F ) = {∞} ∪
⋃

{Df(n)
n : n ∈ ω − F},

where f ∈ ωω and F ∈ F . Then X1 is a closed copy of S2. Moreover, without loss of generality, we may 
assume that X1 ⊂ X and X1 ∩ G1 = ∅. Let X2 = X1 ∪ G1.

For arbitrary n, m ∈ ω and β ∈ ω1, let

Fn,m = {xn(m) + c(α, n) − cα : m ≤ fα(n), α ∈ ω1},
Vn,m = {xn(m) + c(α, n) − x : m ≤ fα(n), α ∈ ω1, x ∈ Cn

α},

and

Cn
β = Cβ \ {c(β, k) : k ≤ n}.

Since X is stratifiable, it follows from [30] that A(X) is stratifiable. Then it follows from [4, Propo-
sition 5.10] and [32] that A3(X2) is a kR-subspace. However, we shall claim that the family {Fn,m} is a 
Cldω-fan in A3(X2) and the family {Vn,m} is compact-finite in A3(X2); then since A3(X2) is normal, it 
follows that the family {Fn,m} is a strict Cldω-fan in A3(X2), which is a contradiction. We divide the proof 
into the following three statements.

(1) Each Fn,m is closed in A3(X2).
Fix arbitrary n, m ∈ ω, and let Xn,m = supp(Fn,m). Obviously, Xn,m is a closed discrete subspace of X2. 

By an argument similar to the proof of (2) in Proposition 4.6, Fn,m is closed in A3(X2).
(2) The family {Vn,m} is compact-finite in A3(X2).
Since the proof is similar to (1) in Proposition 4.6, we omit it.
(3) The family {Fn,m} is not locally finite in A3(X2).
It suffices to prove that the family {Fn,m} is not locally finite at the point ∞ in A3(X2). We give a 

uniform base U of the universal uniformity on X2 as follows. For each α < ω1 and n, k ∈ ω, let

Wk,n = (Dk
n ×Dk

n) ∪ Δxn
and Uk,α = (Ck

α × Ck
α) ∪ Δα,

where Δxn
and Δα are the diagonals of Dn ×Dn and Cα × Cα respectively. For each f ∈ ωω, g ∈ ω1ω and 

F ∈ F , let

U(g, f, F ) =
⋃

{Ug(α),α : α < ω1} ∪ (N(f, F ) ×N(f, F )) ∪ (
⋃

n∈ω

Wf(n),n ×Wf(n),n) ∪ ΔX2 .

Put

U = {U(g, f, F ) : g ∈ ω1ω, f ∈ ωω, F ∈ F}.

Then the family U is a uniform base of the universal uniformity on the space X2. Put

W = {W (P ) : P ∈ U ω}.

Then it follows from [33] that W is a neighborhood base at 0 in A(X2).
Next we prove that ∞ ∈ H \H in A3(X2), where H =

⋃
n,m∈ω Fn,m. Obviously, the family {(∞ + U) ∩

A3(X2) : U ∈ W} is a neighborhood base at ∞ in A3(X2). We shall prove (∞ + U) ∩ A3(X2) ∩H 
= ∅ for 
each U ∈ W, which implies ∞ ∈ H \H in A3(X2). Fix an U ∈ W. Then there exist a sequence {hi}i∈ω in 
ω1ω, a sequence {gi}i∈ω in ωω and a sequence {Fi}i∈ω in F such that
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U = {x1 − y1 + x2 − y2 + ... + xn − yn : (xi, yi) ∈ U(hi, gi, Fi), i ≤ n, n ∈ ω}.

Let

B = {x′ −∞ + x′′ − y′′ : (x′,∞) ∈ N(g1, F1) ×N(g1, F1), (x′′, y′′) ∈ Uh1(α),α, α < ω1}.

Then B ⊂ U . By the assumption, there exists α < ω1 such that fα(k) ≥ g1(k) for infinitely many k. Pick a 
k′ > h1(α) such that k′ /∈ F1 and (xk′(fα(k′)), ∞) ∈ N(g1, F1) ×N(g1, F1). Then

xk′(fα(k′)) −∞ + c(α, k′) − cα ∈ U,

hence

∞ + xk′(fα(k′)) −∞ + c(α, k′) − cα = xk′(fα(k′)) + c(α, k′) − cα

∈ ((∞ + U) ∩A3(Z)) ∩ Fk′,fα(k′)

⊂ Fk′,fα(k′).

Case 2: The space X contains a closed copy of Sω.
Then X contains a closed subspace Y which is homeomorphic to Sω. Moreover, without loss of generality, 

we may assume that Y ∩ G1 = ∅. Let Z = Y ∪ G1. For arbitrary n, m ∈ ω, let

Hn,m = {a(n,m) + c(α, n) − cα : m ≤ fα(n), α ∈ ω1}.

By an argument similar to the proof of Case 1, we can prove that the family {Hn,m} is a strict Cldω-fan 
in the kR-subspace A3(Z), which is a contradiction. �
Note 4.15. By the above proof, it follows that if the space X in Theorem 4.14 is non-metrizable then A(X)
is a k-space.

5. Open questions

In this section, we pose some open questions about kR-spaces.
In [12], the authors proved that each countably compact k-space with a point-countable k-network is 

compact and metrizable. Therefore, we have the following question.

Question 5.1. Is each countably compact kR-space with a point-countable k-network metrizable?

In [4], the authors proved that each closed subspace of a stratifiable kR-space is a kR-subspace. However, 
the following question is still open. First, we recall a concept.

Definition 5.2. A topological space X is a k-semistratifiable space if for each open subset U in X, one can 
assign a sequence {Un}∞n=1 of closed subsets in X such that

(a) U =
⋃

n∈N
Un;

(b) for each compact subset K with K ⊂ U there exists n ∈ N such that K ⊂ Un;
(c) Un ⊂ Vn whenever U ⊂ V .

Question 5.3. Is each closed subspace of k-semistratifiable kR-space a kR-subspace?
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Moreover, we have the following question:

Question 5.4. Is each closed subgroup of a kR-topological group (free Abelian topological group) kR?

In [3], the author posed the following question:

Problem 5.5. ([3, Problem 3.5.5]) Assume that a Tychonoff space contains no Cld-fan. Is X a k-space?

Indeed, the following question is still open.

Question 5.6. Assume that a topological group G contains no Cld-fan. Is G a k-space?

Furthermore we have the following question.

Question 5.7. Assume that a topological group G contains no strict Cld-fan. Is G a kR-space?

By Theorem 3.9, we have the following question.

Question 5.8. Can we replace “k-space” with “kR-space” in the conditions (1), (2) and (3) in Theorem 3.9?

We conjecture that the answer to the following question is positive.

Question 5.9. Let X and Y be two sequential spaces. If X × Y is a kR-space, is X × Y a k-space?

By Theorem 4.14, it is natural to pose the following question.

Question 5.10. Assume b > ω1. Let X be a stratifiable k-space with a compact-countable k-network. If A3(X)
is a kR-space, then is A3(X) a k-space?

It is well-known that neither (S2)ω nor (Sω)ω are k-spaces. Hence it is natural to pose the following 
question:

Question 5.11. Are (S2)ω and (Sω)ω kR-spaces?
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