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Abstract. We answer some questions posed in the book [4] on the theory

of generalized metric spaces.

1. Introduction

In the book [4] on the theory of generalized metric spaces, several questions

concerning point-countable covers and sequence-covering maps are posed. In this

paper, we answer some of them. The readers can refer to [4] (or, [5]) for the

motivation and related matters of each question we answer.

All spaces are assumed to be regular T1, unless a specific separation axiom is

indicated. The symbol N (resp., D) is the set of positive integers (resp., the set

of 0 and 1). Let S = {0} ∪ {1/n : n ∈ N} be the usual convergent sequence.

Let Sω = {∞} ∪ {(n,m) : n,m ∈ N} be the sequential fan, where each (n,m)

is isolated in Sω and a basic open neighborhood of ∞ is of the form N(f) =

{∞}∪{(n,m) : n ∈ N,m ≥ f(n)} for a function f ∈ NN. In other words, Sω is the

quotient space obtained by identifying the limits of countably many convergent

sequences. A family P of subsets of a space X is said to be point-countable (resp.,

compact-finite) if for each point x ∈ X (resp., compact set K ⊂ X), the set

{P ∈ P : x ∈ P} (resp., {P ∈ P : P ∩K 6= ∅}) is countable (resp., finite). For a

point x ∈ X and a subset P ⊂ X, P is said to be a sequential neighborhood of x
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in X if x ∈ P and every sequence in X converging to x is eventually in P (i.e., if

xn → x, then xn ∈ P for all but finitely many n ∈ N).

We recall some definitions [4].

Definition 1.1. Let P be a family of subsets in a space X.

(1) P is a cfp-network for X if whenever K is compact and V is open with

K ⊂ V ⊂ X, there are finitely many P1, . . . , Pn ∈ P and a closed cover

{K1, . . . ,Kn} of K such that K ⊂ P1 ∪ · · · ∪ Pn ⊂ V and Kj ⊂ Pj for all

j.

(2) P is a k-network for X if whenever K is compact and V is open with

K ⊂ V ⊂ X, there are finitely many P1, . . . , Pn ∈ P such that K ⊂
P1 ∪ · · · ∪ Pn ⊂ V .

(3) P is a cs-network (resp., cs∗-network) for X if whenever xn → x and V

is a neighborhood of x, there is some P ∈ P such that x ∈ P and xn ∈ P
for all but finitely many n ∈ N (resp., xn ∈ P for infinitely many n ∈ N).

A k-network consisting of closed subsets is a cfp-network, and every cfp-

network is a both k-network and cs∗-network. Every cs-network is a cs∗-network.

Definition 1.2. Let P =
⋃
{Px : x ∈ X} be a family of subsets in a space X

satisfying (a) for each x ∈ X, x ∈
⋂
Px and if V is a neighborhood of x, then

there is some P ∈ Px such that x ∈ P ⊂ V ; (b) if U, V ∈ Px, then W ⊂ U ∩ V
for some W ∈ Px.

(1) P is a weak-base for X if for every G ⊂ X, G is open in X whenever for

each x ∈ G, there is some P ∈ Px with P ⊂ G.

(2) P is an sn-network for X if for each x ∈ X, every member of Px is a

sequential neighborhood of x.

(3) A space X is gf -countable (resp., snf -countable) if it has a weak-base

(resp., an sn-network) P =
⋃
{Px : x ∈ X} such that each Px is count-

able.

If P =
⋃
{Px : x ∈ X} is a weak-base for a space X, using the condition (1) in

Definition 1.2, we can see that each member of Px is a sequential neighborhood

of x. Hence, a weak-base is an sn-network. In particular, a gf -countable space is

snf -countable.

Definition 1.3. Let f : X → Y be a continuous onto map.

(1) f is 1-sequence-covering if for each y ∈ Y , we can take a point xy ∈ f−1(y)

satisfying that for each sequence {yn : n ∈ N} in Y converging to a point

in Y , there is a sequence {xn : n ∈ N} in X converging to the point xy
such that f(xn) = yn for all n ∈ N.
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(2) f is sequence-covering if for each sequence {yn : n ∈ N} in Y converging

to a point in Y , there is a sequence {xn : n ∈ N} in X converging to a

point in X such that f(xn) = yn for all n ∈ N.

(3) f is sequentially quotient if for each sequence {yn : n ∈ N} in Y converging

to a point in Y , there are a subsequence {ynj
: j ∈ N} of {yn} and

a sequence {xj : j ∈ N} in X converging to a point in X such that

f(xj) = ynj for all j ∈ N.

(4) f is pseudo-sequence-covering if whenever S is a convergent sequence with

its limit in Y , there is a compact set K ⊂ X with f(K) = S.

(5) f is boundary-compact (resp., at most boundary-one) if the boundary of

f−1(y) is compact (resp., at most one point) for each y ∈ Y .

(6) f is an s-map if f−1(y) is separable for each y ∈ Y .

Every 1-sequence-covering map is sequence-covering, and every sequence-

covering map is both sequentially quotient and pseudo-sequence-covering.

2. Questions and Answers

It is known that a closed map of a regular T1-space in which each point is

a Gδ-set is sequentially quotient [4, Lemma 2.3.3]. Therefore, it is natural to

consider the following question.

Question 2.1 ([4, Question 2.3.15]). Is a closed map of a T2-space in which each

point is a Gδ-set sequentially quotient?

This question is in the negative.

Proposition 2.2. There is a closed map ϕ : X → S which is not sequentially

quotient such that X is T2 (non-regular) and every point of X is a Gδ-set.

Proof. Consider the Stone-Čech compactification βN. For each p ∈ βN \ N, let

N (p) = {{p} ∪A : A ∈ p}, and τ be the topology generated by

{{n} : n ∈ N} ∪
⋃
{N (p) : p ∈ βN \ N}.

Then X = (βN, τ) is a T2-space such that each point is a Gδ-set. Let ϕ : X → S
be the map defined as follows: ϕ(n) = 1/n if n ∈ N, and ϕ(p) = 0 if p ∈ βN \ N.

This map ϕ is obviously continuous and onto. Moreover, it is closed. Indeed, let

A be a closed subset in X. If A \N 6= ∅, ϕ(A) is obviously closed in S. If A ⊂ N,

A must be a finite set, so ϕ(A) is closed in S. However, since every convergent

sequence in X is a finite set, ϕ is not sequentially quotient. �

Recall that every cfp-network is a cs∗-network.
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Question 2.3 ([4, Question 2.5.21 (2)]). In ZFC, is there a regular T1-space X

which has a point-countable cs∗-network but no any point-countable cfp-network?

This question is in the negative.

Proposition 2.4. There is a compact T2-space X with a point-countable cs-

network such that X does not have any point-countable cfp-network.

Proof. Let X be the Stone-Čech compactification βN of the discrete space N.

Every convergent sequence in X is a finite set, so P = {{x} : x ∈ X} is a

point-countable cs-network (hence, cs∗-network) for X. Since a compact space

with a point-countable k-network is metrizable [2], X does not have any point-

countable k-network. Since a cfp-network is a k-network, X does not have any

point-countable cfp-network. �

A continuous onto map f : X → Y is said to be almost-open if for each y ∈ Y ,

we can take a point xy ∈ f−1(y) such that if U is a neighborhood of xy in X,

then f(U) is a neighborhood of y in Y . An open map is almost-open. It is easy

to see that every almost-open map of a first-countable space is sequence-covering.

However, there is an open map of a Fréchet space onto S which is not sequence-

covering: see Yanagimoto [11, Example 4.4]. A space X is said to be strongly

Fréchet if for each point x ∈ X and a decreasing sequence {An : n ∈ N} of

subsets of X, x ∈
⋂
{An : n ∈ N} implies that there are points xn ∈ An such

that xn → x (n → ∞). Yanagimoto’s Fréchet space is not strongly Fréchet and

its cardinality is the continuum.

Question 2.5 ([4, Question 2.6.19]). Is each almost-open map of a strongly

Fréchet space sequence-covering?

This question is in the negative. Using Nyikos’ construction in [8], we give a

counterexample of an open map. Let 2<ω be the full binary tree of height ω (i.e.,

the set of all finite sequences of 0’s and 1’s with the extension order ⊂). We give a

topology for the set 2<ω∪Dω as follows: every point of 2<ω is isolated, and a basic

open neighborhood at f ∈ Dω is of the form {f}∪{f �n : n ≥ k}, where k ∈ ω and

f �n is the restriction of f to the domain n. Since 2<ω ∪ Dω is locally compact,

there is the one-point compactification 2<ω ∪Dω ∪{∞}. Let S(Dω) = 2<ω ∪{∞}
be the subspace of 2<ω ∪Dω ∪{∞}. A basic open neighborhood at ∞ ∈ S(Dω) is

of the form S(Dω)\(B0∪· · ·∪Bn), where each Bi is a branch (= a maximal chain)

in 2<ω. A space X is said to be bisequential if every ultrafilter A converging to

a point x ∈ X contains a decreasing sequence {An : n ∈ ω} converging to x

[7]. Every first-countable space is bisequential, and every bisequential space is
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strongly Fréchet [7]. It is know that S(Dω) is bisequential: see the proof in [8,

Corollary 2.8].

Theorem 2.6. There is an open map ϕ : X → S which is not sequence-covering

such that X is countable and bi-sequential.

Proof. Let {Bn : n ∈ N} be a cover of 2<ω consisting of branches in 2<ω, where

Bn 6= Bm if n 6= m. We define a map ϕ : S(Dω) → S as follows: ϕ(∞) = 0, and

ϕ(Bn \ (B1 ∪ · · · ∪ Bn−1)) = {1/n} for each n ∈ N. Obviously ϕ is continuous

and onto. We see that ϕ is open. Let U be an open subset in S(Dω). If ∞ /∈ U ,

ϕ(U) is obviously open in S. If ∞ ∈ U , without loss of generality, we may put

U = S(Dω) \ (C1 ∪ · · · ∪ Ck), where each Ci is a branch in 2<ω. We can take

some l ∈ N such that for each n ≥ l, Bn \ (C1 ∪ · · · ∪Ck) is infinite. This implies

ϕ(U) ⊃ {0} ∪ {1/n : n ≥ l}. Thus ϕ is open.

Claim: If bn ∈ Bn (n ∈ N) and bn 6= bm for n < m, then {bn : n ∈ N} contains an

infinite chain.

Proof. Let ht(b1, 2
<ω) = k (i.e., b1 has just k-many predecessors in 2<ω). Fix

an l ∈ N with k < 2l − 1. Then |{s ∈ Levk+l(2
<ω) : b1 ⊂ s}| = 2l. For each

s ∈ Levk+l(2
<ω) such that b1 ⊂ s and s /∈ B1, using the fact 2<ω =

⋃
{Bn : n ∈

N}, we can take Bn(s) ∈ {Bn : n ∈ N} with s ∈ Bn(s). Then {b1, bn(s)} ⊂ Bn(s)
and one of these bn(s)’s is not a predecessor of b1. Therefore we can take some

bn1
with b1 ⊂ bn1

(n1 6= 1). Continuing this operation, we can obtain an infinite

chain in {bn : n ∈ N}. �

Take any point bn ∈ ϕ−1(1/n) ⊂ Bn for each n ∈ N. Then, by Claim above,

there is an infinite chain {bnj
: j ∈ N} ⊂ {bn : n ∈ N}. Since an infinite chain

is contained in some branch, {bnj : j ∈ N} is closed in S(Dω). Hence, ϕ is not

sequence-covering. �

If a map f : X → Y is 1-sequence-covering countable-to-one and X has a

point-countable sn-network, then Y also has a point-countable sn-network [3].

Question 2.7 ([4, Question 2.6.21]). Let f : X → Y be a 1-sequence-covering, at

most boundary-one, s-map and assume that X has a point-countable sn-network.

Does Y have a point-countable sn-network?

This question is in the negative. Recall that a weak-base is an sn-network.

Theorem 2.8. There is a 1-sequence-covering, at most boundary-one, s-map

ϕ : X → Y such that X has a σ-point-finite weak-base, but Y does not have any

point-countable sn-network.
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Proof. Let A be an almost disjoint family of infinite subsets of N such that

|A| = c. We put A = {Ar : r ∈ C}, where C is the Cantor set. Let Ψ(A) = N∪A
be the space with the topology: every point in N is isolated in Ψ(A), and a basic

open neighborhood of Ar ∈ Ψ(A) is of the form {Ar}∪(Ar\{1, · · · , n}) for n ∈ N.

This Ψ(A) does not have any point-countable sn-network. Indeed, if there is a

point-countable sn-network P =
⋃
{Py : y ∈ Ψ(A)}, then {IntP : P ∈ P} is a

point-countable base of Ψ(A), this is a contradiction. Let X = C×S, and we give

X a topology as follows: a basic open neighborhood of (r, 1/n) ∈ C × (S \ {0})
has the form U × {1/n}, where U is an open-and-closed neighborhood of r ∈ C,

and a basic open neighborhood of (r, 0) ∈ C× {0} has the form

{(r, 0)} ∪
(⋃
{Un × {1/n} : n ∈ Ar, n ≥ k}

)
,

where k ∈ N and Un is an open-and-closed neighborhood of r ∈ C. Obviously X

is Tychonoff.

We see that X has a σ-point-finite weak-base (hence, a point-countable sn-

network). For each r ∈ C and n ∈ N, let

N(r, n) = {(r, 0)} ∪ {(r, 1/k) : k ∈ Ar, k ≥ n} and P(r,0) = {N(r, n) : n ∈ N}.

Let B = {Bn : n ∈ N} be a countable base for C×(S\{0}), and for each (r, 1/n) ∈
X, let P(r,1/n) = {B ∈ B : (r, 1/n) ∈ B}. Then obviously P =

⋃
{Px : x ∈ X}

is a weak-base for X. We see that P is σ-point-finite. Let Qn = {Bn}, and let

Rn = {N(r, n) : r ∈ C}. Then trivially both Qn and Rn are point-finite, and

P =
⋃
{Qn ∪Rn : n ∈ N}.

We define a map ϕ : X → Ψ(A) as follows: ϕ(C×{1/n}) = {n}, and ϕ((r, 0)) =

Ar. It is a routine to check that ϕ is a continuous onto, 1-sequence-covering, at

most boundary-one and s-map. Additionally ϕ is even open. �

Let f : X → Y be a continuous onto map. Then f is said to be 1-scc if for each

compact set K ⊂ Y , there is a compact set L ⊂ X such that: f(L) = K, and for

each y ∈ K we can take a point xy ∈ L such that if yn ∈ Y and yn → y, there is a

sequence {xn : n ∈ N} ⊂ X with xn → xy and xn ∈ f−1(yn); f is said to be scc if

for each compact set K ⊂ Y , there is a compact set L ⊂ X such that: f(L) = K,

and for each sequence {yn : n ∈ N} ⊂ Y converging to a point in K, there is a

sequence {xn : n ∈ N} ⊂ X converging to a point in L with xn ∈ f−1(yn). A

1-scc map is scc.

Question 2.9 ([4, Question 2.7.16]). Is every scc-map of a compact space 1-scc?

This question is in the negative.
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Theorem 2.10. Not every scc-map of a compact space is 1-scc.

Proof. Recall the sequential fan Sω = {∞} ∪ {(n,m) : n,m ∈ N} and take its

subspaces An = {∞} ∪ {(k,m) : 1 ≤ k ≤ n, m ∈ N}. Let X be the topological

sum ⊕{An : n ∈ N} and let ϕ : X → Sω be the map such that ϕ�An is the natural

embedding. We consider the extension ϕβ : βX → βSω of ϕ to the Stone-Čech

compactifications. We see that ϕβ is an scc-map which is not 1-scc. Since ϕβ is

a map of a compact space, to show that ϕβ is scc, it is enough to show that ϕβ

is sequence-covering. Since a 1-scc-map is 1-sequence-covering, to show that ϕβ

is not 1-scc, it is enough to show that ϕβ is not 1-sequence-covering.

Claim 1: Let {pn : n ∈ N} ⊂ βSω be a sequence converging p ∈ βSω\{pn : n ∈ N}.
Then, p =∞ and pn ∈ Sω for all but finitely many n ∈ N.

Proof. Assume p ∈ βSω \ Sω. Take an f ∈ NN such that p /∈ N(f)
βSω

. Then,

the open set Sω \N(f)
βSω

contains p and pn for all but finitely many n ∈ N.

Since Sω \N(f)
βSω

is homeomorphic to βN, this is a contradiction. Thus we

have p = ∞. Assume that βSω \ Sω contains a subsequence {pkn : n ∈ N} of

{pn : n ∈ N}. For each n ∈ N, take an fn ∈ NN such that pkn /∈ N(fn)
βSω

. Take

an f ∈ NN with fn ≤∗ f 1. Then N(f)
βSω \N(f) ⊂ N(fn)

βSω
. Hence, N(f)

βSω ∩
{pkn : n ∈ N} = ∅. Since N(f)

βSω
is open in βSω, this is a contradiction. �

Since ϕ is sequence-covering, so is ϕβ by Claim 1.

Claim 2: Let {pn : n ∈ N} ⊂ βX be a sequence converging p ∈ βX \{pn : n ∈ N}.
Then, p is a limit point in X and pn ∈ X for all but finitely many n ∈ N.

Proof. For each n ∈ N and f ∈ NN, let

An(f) = {∞} ∪ {(k,m) : 1 ≤ k ≤ n, m ≥ f(n)} and X(f) = ⊕{An(f) : n ∈ N}.

Let L be the set of all limit points in X. Since L
βX

is homeomorphic to βN,

it contains only finitely many pn’s. We may assume L
βX ∩ {pn : n ∈ N} = ∅.

Assume p ∈ βX \ X. We consider the case that X contains a subsequence

{pkn : n ∈ N} of {pn : n ∈ N}. Then {pkn : n ∈ N} ∩ An must be finite for all

n ∈ N, so {pkn : n ∈ N}
βX

is homeomorphic to βN. This is a contradiction. Hence

X contains only finitely many pn’s. For simplicity, we may assume pn ∈ βX \X
for all n ∈ N. Using the condition pn /∈ L

βX
, we can take an fn ∈ NN such

that pn /∈ X(fn)
βX

. Take an f ∈ NN with fn ≤∗ f for all n ∈ N. Then

1fn ≤∗ f stands for fn(k) ≤ f(k) for all but finitely many k ∈ N.
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X(f)
βX
\X(f) ⊂ X(fn)

βX
. Hence X(f)

βX
∩ {pn : n ∈ N} = ∅. In other words,

{pn : n ∈ N} ⊂ X \X(f)
βX

. SinceX \X(f)
βX

is homeomorphic to βN, this is a

contradiction. Consequently we have p ∈ L. Since X is open in βX, it contains

all pn but finitely many n ∈ N. �

By Claim 2 and the fact that ϕ is not 1-sequence-covering, ϕβ is not 1-sequence-

covering at ∞ ∈ βSω. �

For a weak-base P =
⋃
{Px : x ∈ X} of a space X and A ⊂ X, the family⋃

{Px : x ∈ A} is said to be an outer weak-base of A.

Question 2.11 ([4, Question 2.7.20]). Does every compact subset of a space with

a point-countable weak-base have a countable outer weak-base?

This question is in the affirmative.

Proposition 2.12. Let X be a space with a point-countable weak-base. Then

every compact subset of X has a countable outer weak-base.

Proof. Let P =
⋃
{Px : x ∈ X} be a point-countable weak-base for X, and

let K be a compact subset in X. Since every point-countable weak-base is a

k-network [9, Proposition 1.8.(1)], K is metrizable. Let D be a countable dense

subset in K. Since P is point-countable, the family Q = {P ∈ P : P ∩D 6= ∅} is

countable. If x ∈ K and P ∈ Px, then P ∈ Q, because there is a sequence in D

converging to x and P is a sequential neighborhood at x. Thus
⋃
{Px : x ∈ K}

is countable. �

A boundary-compact sequence-covering map of a first-countable space (in par-

ticular, a metric space) is 1-sequence-covering [4, Theorem 3.5.3]. A space X is

said to be g-second countable (resp., g-metrizable) if it has a countable (resp.,

σ-locally finite) weak-base. A g-second countable space is g-metrizable.

Question 2.13 ([4, Question 3.5.8]). Let f : X → Y be a boundary-compact

sequence-covering map. If X is g-metrizable, is f 1-sequence-covering?

This question is in the negative.

Proposition 2.14. There is a boundary-compact, sequence-covering map ϕ :

X → Y which is not 1-sequence-covering such that X is g-second countable.

Proof. For each n ∈ N, let An = {∞} ∪ {(k,m) : 1 ≤ k ≤ n, m ∈ N} be

the subspace of the sequential fan Sω = {∞} ∪ {(n,m) : n,m ∈ N}. Consider

the topological sum (⊕{An : n ∈ N}) ⊕ S, and let X be the quotient space of
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(⊕{An : n ∈ N})⊕ S obtained by identifying the point ∞ ∈ An and 1/n ∈ S for

each n ∈ N. It is a routine to check that X is g-second countable. Let ϕ : X → Sω
be the map defined as follows: ϕ(x) =∞ for x ∈ S, and ϕ((k,m)) = (k,m). Easily

we can see that ϕ is continuous onto, sequence-covering, boundary-compact and

not 1-sequence-covering. �

Let f : X → Y be a sequence-covering closed map and assume that X has a

point-countable weak-base, then Y is gf -countable [6].

Question 2.15 ([4, Question 3.5.19]). Let f : X → Y be a sequence-covering

closed map and assume that X has a point-countable sn-network. Is Y snf -

countable?

Let f : X → Y be a sequence-covering closed map and assume that X has a

σ-compact-finite weak-base, then Y also has a σ-compact-finite weak-base [6].

Question 2.16 ([4, Question 4.1.29]). Let f : X → Y be a sequence-covering

closed map and assume that X has a σ-compact-finite sn-network. Does Y have

a σ-compact-finite sn-network?

These two questions are in the negative. Note that a σ-compact-finite family

is point-countable, and that a space with a σ-compact-finite sn-network is snf -

countable. For convenience of the readers, we give the proof of the following well

known fact.

Lemma 2.17. The sequential fan Sω is not snf -countable at the point ∞.

Proof. Assume that the point ∞ has a countable sn-network {An : n ∈ N}.
Then, N(fn) ⊂ An for some fn ∈ NN. Hence Sω is first-countable at ∞. This is

a contradiction. �

Theorem 2.18. There is a sequence-covering closed map ϕ : Y → Sω such that

Y has a σ-compact-finite sn-network.

Proof. Let N ⊂ X ⊂ βN be a countably compact space such that every compact

subset of X is finite. Such a space was constructed by Frolik [1]. For each k, l ∈ N
and a function f ∈ NN, we put

Ak = {(n,m, k) : n,m ∈ N, n ≤ k},
Ak(l) = {(n,m, k) ∈ Ak : m ≥ l}, and

Ak(f) = {(n,m, k) ∈ Ak : m ≥ f(n)}.

Let Y = X∪
⋃
{Ak : k ∈ N}. We give Y a topology. Every point in

⋃
{Ak : k ∈ N}

is isolated in Y . Every point k ∈ N in Y has a basic open neighborhood of the
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form {k} ∪ Ak(l), l ∈ N. Every point p ∈ Y \ (N ∪
⋃
{Ak : k ∈ N}) has a basic

open neighborhood of the form, for an open neighborhood U of p in X and an

f ∈ NN, U(p, f) = U ∪
⋃
{Ak(f) : k ∈ U}. Obviously Y is a zero-dimensional

Tychonoff space, and each {k} ∪Ak is homeomorphic to the convergent sequence

S.

Claim: Let p ∈ Y \ (N ∪
⋃
{Ak : k ∈ N}), and {yn : n ∈ N} be a sequence in Y

converging to p. Then {yn : n ∈ N} is finite.

Proof. We may assume {yn : n ∈ N} ⊂
⋃
{Ak : k ∈ N}, because every compact

subset of X is finite. Let P = {k ∈ N : Ak ∩ {yn : n ∈ N} 6= ∅}. If P /∈ p,

N \ P ∈ p, so there is an open neighborhood U of p in X such that U ∩ P = ∅.
Then {yn : n ∈ N} ∩ U(p, c1) = ∅, where c1 is the constant function to 0. This

is a contradiction. Let P ∈ p. Let {P0, P1} be a partition of P of infinite sets,

and assume P1 ∈ p. Then by a similar argument as in the case P /∈ p, we can

observe that {yn : n ∈ P0} does not converge to p. Thus {yn : n ∈ N} cannot be

a convergent sequence to p. �

We see that Y has a σ-compact-finite sn-network. For each y ∈ Y \ N, let

Py = {{y}}, and for each y = k ∈ N in Y , let Py = {{k} ∪ Ak(l) : l ∈ N}.
By Claim above, each Py is an sn-network at y. Next we see that the family⋃
{Py : y ∈ Y } is σ-compact-finite. We put

Q = {{p} : p ∈ Y \ (N ∪
⋃
{Ak : k ∈ N})},

Qn,m,k = {(n,m, k)} for each n,m, k ∈ N with n ≤ k, and

Rk,l = {{k} ∪Ak(l)} for each k, l ∈ N.

Obviously these are compact-finite, and the union of them is just
⋃
{Py : y ∈ Y }.

We define a map ϕ : Y → Sω as follows: ϕ(y) =∞ if y ∈ X, and ϕ((n,m, k)) =

(n,m) for each n,m, k ∈ N with n ≤ k. For each f ∈ NN, we can easily observe

ϕ−1(N(f)) = X ∪
⋃
{Ak(f) : k ∈ N}, so this map is continuous. Obviously

ϕ is sequence-covering. Finally we see that ϕ is closed. Let H be a closed

subset of Y . If H ∩ X 6= ∅, then obviously ϕ(H) is closed in Sω. Assume that

H ∩ X = ∅ and ϕ(H) is not closed in Sω. Then there are an n1 ∈ N and a

sequence m1 < m2 < · · · such that {(n1,mj) : j ∈ N} ⊂ ϕ(H). Take kj ∈ N such

that (n1,mj , kj) ∈ H and n1 ≤ kj . If {kj : j ∈ N} is finite, H contains a sequence

converging to some point k ∈ N. This is a contradiction. So, without loss of

generality, we may assume k1 < k2 < · · · . Since X is countably compact, there is

a point p ∈ {kj : j ∈ N} \ {kj : j ∈ N}. Since H is closed in Y , there are an open

neighborhood U of p in X and an f ∈ NN such that U(p, f) ∩ H = ∅. Since U
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contains infinitely many kj , there is a j ∈ N such that kj ∈ U and f(n1) ≤ mj .

For this j, (n1,mj , kj) ∈ Akj (f)∩H ⊂ U(p, f)∩H. This is a contradiction. Thus

ϕ(H) must be closed in Sω. �

Question 2.19 ([4, Question 3.5.27]). Give a characterization of a space X such

that every pseudo-sequence-covering map onto X is 1-sequence-covering.

The following answers this question.

Proposition 2.20. For a space X, the following are equivalent.

(1) Every pseudo-sequence-covering map onto X is 1-sequence-covering;

(2) Every pseudo-sequence-covering map onto X is sequence-covering;

(3) Every convergent sequence of X is a finite set:

(4) Every map onto X is 1-sequence-covering.

Proof. Among implications (1) → (2) → (3) → (4) → (1), we have only to

show (2) → (3). Assume (2). Since X is regular T1, there are a regular T1
extremally disconnected space EX and a perfect irreducible onto map f : EX →
X [10], where a space is said to be extremally disconnected if the closure of each

open subset is open. Since a perfect map is pseudo-sequence-covering, f must be

sequence-covering by (2). Hence (3) holds, because every convergent sequence in

an extremally disconnected space must be a finite set. �

A family P of subsets of a space X is said to be hereditarily closure-preserving

if for any P ′ ⊂ P and any subsets H(P ) ⊂ P for P ∈ P ′,⋃
{H(P ) : P ∈ P ′} =

⋃
{H(P ) : P ∈ P ′}

holds. In a regular T1-space X, if P is a hereditarily closure-preserving family of

X, then so is P = {P : P ∈ P}.

Question 2.21 ([4, Question 4.2.7]). Let P be a hereditarily closure-preserving

family of a T2 (non-regular) space X. Is P = {P : P ∈ P} hereditarily closure-

preserving?

This question is in the negative.

Proposition 2.22. There are a T2 (non-regular) space X and a hereditarily

closure-preserving family P in X such that P = {P : P ∈ P} is not hereditarily

closure-preserving.

Proof. For each n,m ∈ N, let An,m = {(n,m)} ∪ {(n,m, l) : l ∈ N}, and we

put X = {∞} ∪
⋃
{An,m : n,m ∈ N}. We give X a topology. Each (n,m, l) is
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isolated in X. Each (n,m) has a basic open neighborhood of the form An,m(k) =

{(n,m)}∪{(n,m, l) : l ≥ k}, k ∈ N. Thus An,m is homeomorphic to S. The point

∞ has a basic open neighborhood of the form, for k ∈ N and f ∈ NN, V (∞, k, f) =

{∞} ∪ {(n,m) : n ∈ N, n ≥ k,m ≥ f(n)} ∪ {(n,m, l) : n, l ∈ N,m ≥ f(n)}. Note

that V (∞, k, f)∩V (∞, k′, f ′) = V (∞,max{k, k′},max{f, f ′}). Obviously X with

this topology is a T2 non-regular space (for example, the closed set {(1,m) : m ∈
N} and the point ∞ cannot be separated by open sets). For each n ∈ N, let

Pn = {(n,m, l) : m, l ∈ N}, and we put P = {Pn : n ∈ N}.
We see that P is hereditarily closure-preserving in X. Fix a subset J ⊂ N,

and take any subset Qj ⊂ Pj for each j ∈ J . We observe that
⋃
{Qj : j ∈ J}

is closed in X. Let x ∈ X \
⋃
{Qj : j ∈ J}. If x = (n,m) for some n,m ∈ N,

{(n,m, l) : l ∈ N} ∩
⋃
{Qj : j ∈ J} is finite. hence An,m(k) ∩

⋃
{Qj : j ∈ J} = ∅

for some k ∈ N. Let x = ∞. By the condition ∞ /∈ Qj , there is a kj ∈ N such

that Qj ∩
⋃
{Aj,m : m ≥ kj} = ∅. Let f ∈ NN be any function with f(j) = kj for

j ∈ J . Then V (∞, 1, f)∩
⋃
{Qj : j ∈ J} = ∅. Thus

⋃
{Qj : j ∈ J} is closed in X.

Finally we see that P = {Pn : n ∈ N} is not hereditarily closure-preserving.

For each n ∈ N, let Cn = {(n,m) : m ∈ N}. Then each Cn is closed in X and

Cn ⊂ Pn, but easily we can see ∞ ∈
⋃
{Cn : n ∈ N}. �
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