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Given a Tychonoff space X, let F (X) and A(X) be respectively the free topological 
group and the free Abelian topological group over X in the sense of Markov. In 
this paper, we provide some topological properties of X whenever one of F (X), 
A(X), some finite level of F (X) and some finite level of A(X) is q-space (in 
particular, locally ω-bounded spaces and r-spaces), which give some partial answers 
to a problem posed in [10].
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1. Introduction

Let F (X) and A(X) be respectively the free topological group and the free Abelian topological group 
over a Tychonoff space X in the sense of Markov [9]. For every n ∈ N, by Fn(X) we denote the subspace of 
F (X) that consists of all words of reduced length at most n with respect to the free basis X. The subspace 
An(X) is defined similarly. We always use G(X) to denote F (X) or A(X), and Gn(X) to Fn(X) or An(X)
for each n ∈ N. Therefore, any statement about G(X) applies to F (X) and A(X), and Gn(X) applies to 
F (X) and A(X).

One of the techniques of studying the topological structure of free topological groups is to clarify the 
relations of subspaces X, G(X), and Gn(X), where n ∈ N. It is well known that only when X is discrete, 
G(X) can be first-countable. Therefore, G(X) is first-countable if and only if X is discrete [7]. Similarly, the 
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group G(X) is locally compact if and only if X is discrete [4]. More generally, P. Nickolas and M. Tkachenko 
proved that if G(X) is almost metrizable, then X is discrete [10]. Further, K. Yamada gave a characterization 
for a metrizable space X such that some Gn(X) is first-countable [14]. Then P. Nickolas and M. Tkachenko 
showed that F4(X) is of pointwise countable type if and only if X is either compact or discrete [10]. Since 
each space being of pointwise countable type is a q-space, P. Nickolas and M. Tkachenko posed the following 
problem in [10].

Problem 1.1. [10, Problem 5.2] Characterize the spaces X such that F2(X) is a q-space. What about Fn(X)
for all n ∈ N? The Abelian case?

In this article, we shall give some partial answers to Problem 1.1. This article is organized as follows. 
Section 2 introduces the notation and terminology used throughout the paper. In Section 3, we characterize 
the spaces X such that F (X) and A(X) are q-spaces. Moreover, the q-subspaces of the groups F (X) and 
A(X) are studied. In Section 4, we show that X must belong to some class of spaces if F4(X) is a q-space. 
We also show that if F2(X) is a q-space then the set X ′ of all non-isolated points of X is bounded in X. In 
Section 5, we mainly prove that F2(X) is locally ω-bounded if X is homeomorphic to the topological sum 
of an ω-bounded space and a discrete space. In Section 6, some examples and questions are presented and 
posed respectively.

2. Notation and terminologies

In this section, we introduce the necessary notation and terminologies. Throughout this paper, all topo-
logical spaces are assumed to be Tychonoff, unless explicitly stated otherwise. For undefined notation and 
terminologies, refer to [3,6,8]. First of all, let N and ω1 denote the set of positive integers and the first 
uncountable ordinal, respectively.

Let X be a space and x ∈ X. If there exists a sequence {Un : n ∈ N} of open neighborhoods of x in 
X satisfying the following (�), then we say that x is an r-point (resp. a q-point) in X and the sequence 
{Un : n ∈ N} is an r-sequence (resp. a q-sequence).

(�) For an arbitrary sequence {xn ∈ Un : n ∈ N}, there exists a compact subset (resp. countably compact 
subset) K of X such that {xn ∈ Un : n ∈ N} ⊂ K.

Let X be a space. The space X is said to be an r-space (resp. a q-space) if each point of X is an
r-point (resp. q-point) in X. Recall that X is the space of pointwise countable type [1] if every point of X
is contained in a compact subspace K that is of countable character in X. Recall that a space X is locally 
ω-bounded at point x ∈ X if there exists an open neighborhood U of the point x in X such that the closure 
of every countable subset of U is compact in U . In particular, X is said to be locally ω-bounded if it is 
locally ω-bounded at each point of X. A space X is ω-bounded [2] if the closure of every countable subset 
of X is compact. The following implications follow directly from definitions:

�

�compact ω-bounded
�

�
��

�
�

��
countably compactlocally ω-bounded

��
�First-countable pointwise countable type � r-space �q-space

(A)

Note that none of the above implications can be reversed.
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Let X be a topological space X and A be a subset of X. The closure of A in X is denoted by A. The set 
A is called bounded in X provided every continuous real-valued function f defined on X is bounded on A. 
If the closure of every bounded set in X is compact, then X is called a μ-space. The derived set of X is 
denoted by X ′. In addition, X is called a k-space provided that a subset C ⊆ X is closed in X if C ∩K is 
closed in K for each compact subset K of X. In particular, X is called a kω-space if there exists a family of 
countably many compact subsets {Kn : n ∈ N} in X such that each subset F of X is closed in X if F ∩Kn

is closed in Kn for each n ∈ N.

Let X be a non-empty space. Throughout this paper, X−1 := {x−1 : x ∈ X} and −X := {−x : x ∈ X}, 
which are just two copies of X. Let e be the neutral element of F (X) (i.e., the empty word) and 0 be that 
of A(X). For every n ∈ N and an element (x1, x2, · · · , xn) of (X

⊕
X−1 ⊕{e})n we call g = x1x2 · · ·xn a 

form. In the Abelian case, x1 + x2 · · · + xn is also called a form for (x1, x2, · · · , xn) ∈ (X
⊕

−X
⊕

{0})n. 
This word g is called reduced if it does not contains e or any pair of consecutive symbols of the form xx−1

or x−1x. It follows that if the word g is reduced and non-empty, then it is different from the neutral element 
e of F (X). Similar assertions (with the obvious changes for commutativity) are valid for A(X). For every 
n ∈ N, let in : (X

⊕
X−1 ⊕{e})n → Fn(X) be the natural mapping defined by

in(x1, x2, ...xn) = x1x2...xn

for each (x1, x2, ...xn) ∈ (X
⊕

X−1 ⊕{e})n. We also use the same symbol in the Abelian case, that is, in 
means the natural mapping from (X

⊕
−X

⊕
{0})n onto An(X). Clearly, each in is a continuous mapping.

3. The characterizations of q-spaces in free topological groups

In this section, we shall give a characterization for a space X such that G(X) is a q-space. Then, we 
show that X contains a copy of P if the free topological group G(X) contains a copy of some q-space P .

We first show two lemmas and a proposition which play an important role in the proof of our main 
theorem in this section.

Lemma 3.1. Let X be a non-discrete space. Then, for each open neighborhood U of e in A(X), we have 
U � Ak(X) for each k ∈ N.

Proof. Assume on the contrary that there exist an open neighborhood U of e in A(X) and k0 ∈ N such 
that U ⊆ Ak0(X). Since A(X) is a topological group, there is an open neighborhood V of e in A(X) with 
V k0+1 ⊆ U . Since X is not discrete, A(X) is also not discrete. Take an arbitrary point x ∈ V \ {e}. Then 
we have

xk0+1 ∈ V k0+1 ⊆ U ⊆ Ak0(X).

Since A(X) is Abelian, the length of xk0+1 is at least k0 + 1. However, each element of Ak0(X) is at most 
k0. A contradiction occurs. �

It is well known that each A(X) is a quotient group of F (X) for each space X, hence A(X) is an open 
image of F (X). Then it follows from Lemma 3.1 that we also have the following lemma.

Lemma 3.2. Let X be a non-discrete space. Then, for each open neighborhood U of e in F (X), we have 
U � Fk(X) for each k ∈ N.

Proposition 3.3. Suppose that X is a space. If Y is a q-subspace in G(X). Then the family {(Gn+1\Gn) ∩Y :
n ∈ N} is discrete in Y .
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Proof. Assume on the contrary that the family {(Gn+1 \Gn) ∩ Y : n ∈ N} is non-discrete in Y . Then there 
exits a point g ∈ Y such that the family {(Gn+1 \Gn) ∩Y : n ∈ N} is non-discrete at the point g in Y . Since 
Y is a q-space, there exists a sequence {Un : n ∈ N} of open neighborhoods at g in Y satisfying (�). By the 
assumption, we can choose an increasing subsequence {kn : n ∈ N} of N such that Un ∩ (Gkn+1 \Gkn

) �= ∅
for each n ∈ N, and then pick a point gn ∈ Un ∩ (Gkn+1 \Gkn

) for each n ∈ N. By (�), the set {gn : n ∈ N}
is contained in some countably compact subset K in Y . Obviously, K is also a countably compact subset in 
G(X), then it follows from [3, Corollary 7.4.4] that K is contained in some Gm(X) for some m ∈ N, which 
is a contradiction. �

By Lemmas 3.1, 3.2 and Proposition 3.3, we obtain one of the main theorems in this section, which 
generalizes a result in [10].

Theorem 3.4. Let X be a space. If G(X) is a q-space, then X is discrete.

Moreover, by Proposition 3.3, we have the following result.

Proposition 3.5. Let X be a non-discrete space. Then, for every sequence {ni : i ∈ N} of natural numbers, 
the set 

⋃
i∈N

(Gni
(X) \Gni−1(X)) is not a q-subspace.

Proof. By the proof of [13, Corollary 3.4], it easily checks that {Gni
(X) \Gni−1(X) : i ∈ N} is not discrete 

in 
⋃

i∈N
(Gni

(X) \Gni−1(X)). Therefore, it follows from Proposition 3.3 that 
⋃

i∈N
(Gni

(X) \Gni−1(X)) is 
not a q-space. �

Next, we shall consider the question when X contains a copy of a q-space P if G(X) contains a copy of 
some q-space P . We first recall some concepts and show a technical lemma.

We say that a space X is densely self -embeddable, if each non-empty open set in X contains a copy of X. 
A space P is said to be prime if for any spaces X and Y , we have the following statement:

If X × Y contains a copy of P , then either X or Y contains a copy of P .

Lemma 3.6. Assume that Y is a densely self-embeddable, q-space and G(X) contains a copy of Y . Then, 
some Gn(X) contains a copy of Y .

Proof. Assume that G(X) contains a copy of Y . Since Y is a densely self-embeddable, it suffices to show 
that there exists a non-empty open set U of Y such that U is contained in some Gn(X). Pick an arbitrary 
point y ∈ Y . Then y is a q-point in Y , and hence there exists a sequence {Un : n ∈ N} of open neighborhoods 
at y in Y such that {Un : n ∈ N} satisfies the condition (�). We claim that Uk ⊆ Gn(X) for some k, n ∈ N. 
Assume on the contrary that Uk � Gn(X) for any k, n ∈ N. Then it is easy to see that there exist a countably 
compact subset K and a sequence {yn : n ∈ N} in Y such that {yn : n ∈ N} ⊆ K and yn /∈ Gn(X) for 
each n ∈ N. However, it follows from [3, Corollary 7.4.4] that K is contained in some Gn(X), which is a 
contradiction. Therefore, Uk ⊆ Gn(X) for some k, n ∈ N, hence Gn(X) contains a copy of Y . �

Now we can show the second main theorem in this section, which generalizes a result in [5]. Indeed, 
K. Eda, H. Ohta and K. Yamada showed that, for each densely self-embeddable and prime space which is 
either compact or first countable, X contains a copy of P iff F (X) contains a copy of P iff A(X) contains 
a copy of P . By the implications of diagram (A), we see that each compact or first-countable space is a 
q-space.

Theorem 3.7. Let P be a densely self-embeddable, prime q-space. For a space X, the following are equivalent:
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(1) X contains a copy of P .
(2) F (X) contains a copy of P .
(3) A(X) contains a copy of P .

Proof. Clearly, it suffices to show that (2) ⇒ (1) and (3) ⇒ (1).
(2) ⇒ (1). Assume that F (X) contains a copy of P . By Lemma 3.6, some Fn(X) contains a copy of P . 

Without loss of generality, we may assume that n is the least number such that Fn(X) contains a copy of 
P . Since P is densely self-embeddable, Fn(X) \ Fn−1(X) contains a copy of P . Further, we may assume 
that P is a subspace of Fn(X) \ Fn−1(X). Then (X

⊕
X−1)n contains a copy of P since Fn(X) \ Fn−1(X)

is homeomorphic to a subspace of (X
⊕

X−1)n. Since P is prime and densely self-embeddable, X contains 
a copy of P .

(3) ⇒ (1). Similar to (2) ⇒ (1), one see that An(X) \ An−1(X) contains a copy of P for some least 
number n ∈ N. It is well known that An(X) \An−1(X) is homeomorphic to a subspace of finite symmetric 
products (X

⊕
X−1)n/n! (see [5]). It follows from [5, Proposition 2.1] that X itself contains a copy of P . �

4. The topological properties of q-spaces in Fn(X)

In this section, we shall give some topological properties for a space X whenever Gn(X) is a q-space or 
an r-space. First, we recall a theorem which was proved in [14].

Let X be a space, and let UX be the finest uniformity on X compatible with the topology of X. For 
each U ∈ UX , put

O2(U) := {xεy−ε : (x, y) ∈ U, ε = ±1}.

In [14], K. Yamada obtained the following theorem.

Theorem 4.1. ([14]) The family {O2(U) : U ∈ UX} is a neighborhood base at e in F2(X).

Now we can give a topological property for a space X when F2(X) is a q-space, which is similar to that 
in [10, Lemma 2.1].

Proposition 4.2. If F2(X) is a q-space, then the derived set X ′ is bounded in X.

Proof. Since F2(X) is a q-space, there exists a sequence {Un : n ∈ N} of open neighborhoods at e in F2(X)
such that {Un : n ∈ N} satisfies (�). Suppose that X ′ is not bounded in X. Then there exists in X a discrete 
family of open subsets {Vn : n ∈ N} each of which intersects X ′. Choose a point xn ∈ Vn ∩ X ′ for each 
n ∈ N. Since each xn ∈ X ′, we can find yn ∈ Vn such that xn �= yn and x−1

n yn ∈ Un for each n ∈ N. It is 
easy to see that x−1

n yn �= x−1
m ym for distinct m, n ∈ N. Set P := {x−1

n yn : n ∈ N}.

Claim: The set P is closed and discrete in F2(X).

Indeed, it suffices to show that each point in F2(X) is not a cluster point of P .

Subclaim 1: Each point in X ∪X−1 is not a cluster point of P .

Obviously, all elements of P have length 2. Since the set X ∪X−1 is open in F2(X), the set P has no 
cluster points in X ∪X−1.

Subclaim 2: The point e is not a cluster point of P .

Since the family {Vn : n ∈ N} is discrete in X and xn and yn are distinct points in Vn, it follows from 
[6, 8.1.C] that the set
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U := (X ×X) \ {(xn, yn), (yn, xn) : n ∈ N}

belongs to the finest uniformity on X. Then it follows from Theorem 4.1 that the set O2(U) is an open 
neighborhood of the point e in F2(X). Obviously, O2(U) ∩ P = ∅. Therefore, e is not a cluster point of P .

Subclaim 3: Each point in F2(X) \ F1(X) is not a cluster point of P .

Clearly, the natural mapping i2 : (X
⊕

X−1 ⊕{e})2 → F2(X) is a local homeomorphism from 
(X

⊕
X−1 ⊕{e})2 to F2(X) at each point of (X

⊕
X−1 ⊕{e})2\i←2 (e). Moreover, the set L := {(x−1

n , yn) :
n ∈ N} is closed and discrete in (X

⊕
X−1 ⊕{e})2, which shows that the set P = j2(L) has no cluster 

points in F2(X) \ F1(X).
Therefore, the claim is verified.
However, F2(X) is a q-space, then P has a cluster point in F2(X) since each x−1

n yn ∈ Un, which is a 
contradiction.

Therefore, the derived set X ′ is bounded in X. �
By Proposition 4.2, the following two corollaries are obvious.

Corollary 4.3. If X is a homogeneous space and F2(X) is a q-space, then X is pseudocompact or discrete.

Corollary 4.4. If F2(X) is a q-space and X is a μ-space, then X ′ is compact.

Next, we shall consider the question that X belongs to what kind of classes of spaces if F4(X) is a 
q-space. We first recall two concepts.

A space is called a cf -space if each compact subset of it is finite. Recall that a subspace Y of a space X is 
said to be P-embedded in X if each continuous pseudometric on Y admits a continuous extensions over X.

Theorem 4.5. Let X be a space. If F4(X) is a q-space, then X is either pseudocompact or a cf -space.

Proof. Suppose X is not a cf -space. Then there exists an infinite compact subset C in X. Next we shall 
show that X is pseudocompact.

Assume on the contrary that we can find a countably infinite discrete family of open sets {Un : n ∈ N}
in X. It easily checks that the family of {Un : n ∈ N} is also discrete in X, and hence 

⋃
n∈N

Un is closed 
in X. Since the set C is compact, it can intersect at most a finite number of the sets Un. Without loss of 
generality, we may assume that C ∩

⋃
n∈N

Un = ∅. Now the family {C} ∪ {Un : n ∈ N} is discrete in X.
Since C is an infinite compact subset in X, there exists a non-isolated point x in C. For each n ∈ N, 

pick yn ∈ Un, and then put Cn := y−1
n x−1Cyn. Let

Y := C ∪ {yn : n ∈ N} and Z :=
⋃
n∈N

Cn.

Obviously, Y is closed, σ-compact, non-discrete and P -embedded in X. By [12], the subgroup F (Y, X)
of F (X) generated by Y is naturally topologically isomorphic to the free topological group F (Y ). Moreover, 
since Y is a kω-space, it follows from [3] that the free group F (Y ) is also a kω-space, hence F4(Y ) is also a 
kω-space. Next, we claim that Z is closed in F4(Y ).

Indeed, for each n ∈ N, let

Kn := C ∪ C−1 ∪ {yi, y−1
i : i ≤ n} ∪ {e}

and
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Xn :=
n︷ ︸︸ ︷

Kn · . . . ·Kn

Then it follows from the proof of [3, Theorem 7.4.1] that the topology of F (Y ) is determined by the family 
of compact subsets {Xn : n ∈ N}. Hence the topology of F4(Y ) is determined by the family {Xn ∩ F4(Y ) :
n ∈ N}. Then we have Z ∩ Xn ∩ F4(Y ) =

⋃n
i=1 Ci for each n ∈ N, which shows that Z is closed in 

F4(Y ). Therefore, Z is a q-space. Moreover, ones see that the topology of Z is determined by the family 
{Cn : n ∈ N}, which shows that Z is not a q-space since any compact subset of Z lies in a finite union ⋃

i≤n Ci for some n ∈ N. Hence e is not a q-point in F4(X), which is a contradiction. �
Remark 4.6. Let Z = X

⊕
Y , where X is an infinite compact space and Y is an infinite discrete space. 

Then F4(Z) is not a q-space by Theorem 4.5. By [14], ones see that “F4(X)” in Theorem 4.5 cannot be 
replaced by “F3(X)”. Indeed, if X is a compact metrizable space, then F3(Z) is metrizable [14]. However, 
Z is neither pseudocompact nor a cf -space.

It is natural to consider what conditions on a space X can guarantee X to be countably compact or 
discrete if F4(X) is a q-space. We first recall two concepts.

A topological space is said to be collectionwise Hausdorff if given any closed discrete collection of points 
in the topological space, there are pairwise disjoint open sets containing the points. A topological space X
is weakly-k if and only if a subset F of X is closed in X if F ∩C is finite for every compact subset C in X. 
Obviously, we have the following two facts:

(a) Each k-space is a weakly-k space.
(b) Each weakly-k cf -space is discrete.
However, there exists a weakly-k space which is not a k-space, see [11].
Obviously, each collectionwise Hausdorff pseudocompact space is countably compact. Hence, we have 

the following corollary.

Corollary 4.7. Let X be a collectionwise Hausdorff space. If F4(X) is a q-space, then X is either countably 
compact or a cf -space.

Further, we have the following Theorem 4.8, which is a more stronger form of Corollary 4.7.

Theorem 4.8. Let X be a collectionwise Hausdorff, weakly-k and non-discrete space. If F4(X) is a q-space, 
then X2 is countably compact.

Proof. Since X is a non-discrete weakly-k-space, we see that X is not a cf -space, hence X is pseudocompact 
by Theorem 4.5. Then X is countably compact since it is collectionwise Hausdorff. Therefore, it follows from 
[11] that X2 is countably compact. �

If we replace “q-space” with “r-space” in Theorem 4.5, we can obtain a more stronger result.

Corollary 4.9. Let X be a space. If F4(X) is an r-space, then X is either pseudocompact or discrete.

Proof. Suppose that X is a cf -space, then X is discrete since X is an r-space. Therefore, the corollary holds 
by Theorem 4.5. �

By Corollary 4.9, we have the following theorem.

Theorem 4.10. The following conditions are equivalent for a μ-space X:
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(1) F4(X) is an r-space.
(2) F4(X) is of pointwise countable type.
(3) F4(X) is locally compact.
(4) Fn(X) is of pointwise countable type for each n ∈ N.
(5) Fn(X) is locally compact for each n ∈ N.
(6) The space X is either compact or discrete.

Proof. For any space X, the equivalence of items (2), (3), (4) and (5) of the theorem were established in [10]. 
Obviously, we have (5) ⇒ (1). By Corollary 4.9, X is pseudocompact or discrete. If X is pseudocompact, it 
follows that X is compact since it is a μ-space. Hence (1) ⇒ (2). �
5. The topological properties of ω-bounded spaces in F2(X)

In this section, we shall give some topological properties for a space X when G2(X) is an ω-bounded 
space. First, we give some topological properties of an ω-bounded space.

Obviously, each compact space is ω-bounded, and each ω-bounded space is a countably compact r-space. 
Moreover, it is easy to see that [0, ω1) is an ω-bounded and non-compact space. It is well known that there 
exist two countably compact spaces such that their product is not countably compact. However, it easily 
checked that the product of a family of ω-bounded spaces is again ω-bounded.

The following two propositions are obvious.

Proposition 5.1. Let f : X → Y be a continuous mapping. If X is ω-bounded, then Y is also ω-bounded.

By [6, Propositions 3.72 and 3.7.6], it is easy to show the following proposition.

Proposition 5.2. Let f : X → Y be a continuous perfect mapping. If Y is ω-bounded (resp. locally ω-bounded), 
then X is also ω-bounded (locally ω-bounded).

Proposition 5.3. Let X = Y
⊕

D be the topological sum of a space Y and a discrete space D. Then we have 
the following statements.

(a) F2(X) is an r-space iff F2(Y ) is an r-space.
(b) F2(X) is a locally ω-bounded space iff F2(Y ) is a locally ω-bounded space.
(c) For every n ∈ N, An(X) is a q-space (resp. r-space, locally ω-bounded) iff An(Y ) is a q-space (resp. 

r-space, locally ω-bounded).

Proof. (a) Since Y is a retract of X, the closed subgroup F (Y, X) of F (X) is topologically isomorphic to 
the group F (Y ). Therefore, F2(Y ) can be identified with the closed subspace F2(Y, X) := F (Y, X) ∩F2(X)
of F2(X). Thus F2(Y ) is an r-space if F2(X) is an r-space.

Conversely, suppose that F2(Y ) is an r-space. Since Y is closed in X, it is easy to see that X is an r-space. 
Then (X

⊕
X−1 ⊕{e})2 is an r-space. Further, since the natural mapping i2 : (X

⊕
X−1 ⊕{e})2 → F2(X)

is a local homeomorphism from (X
⊕

X−1 ⊕{e})2 to F2(X) at each point of (X
⊕

X−1 ⊕{e})2 \ i←2 (e), 
each point of F2(X) \ {e} is an r-point. It remains to show that e is an r-point in F2(X).

Since e is an r-point in F2(Y ), there exists a sequence of open neighborhoods {Un : n ∈ N} of e in F2(Y )
such that {Un : n ∈ N} is an r-sequence. For every n ∈ N, it follows from Theorem 4.1 that there exists 
a Wn ∈ UY such that O2(Wn) ⊂ Un. Put W ∗

n := Wn ∪ {(d, d) : d ∈ D} for each n ∈ N. Clearly, each W ∗
n

belongs to the finest uniformity of X, and O2(Wn) = O2(W ∗
n). Since F (Y ) is topologically isomorphic to 

the closed subgroup F (Y, X) of F (X), the sequence {O2(W ∗
n) : n ∈ N} is an r-sequence at e in F2(X).

(b) The proof is quite similar to (a), so we omit it.
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(c) It is well known that A(X) is topologically isomorphic in the natural way with A(Y ) × A(D). If 
we identify A(X) and A(Y ) × A(D) under this isomorphism, then we have An(X) ⊆ An(Y ) × An(D) and 
An(X) is closed in An(Y ) × An(D) for each n ∈ N. Since A(D) is discrete, each An(D) is discrete, and 
hence it is easy to see that (c) holds. �
Proposition 5.4. If A2(X) is locally ω-bounded, then F2(X) is also locally ω-bounded

Proof. Let ϕ : F (X) → A(X) be the canonical homomorphism from F (X) onto A(X). Then the restriction 
ϕ2 := ϕ � F2(X) is a perfect mapping from F2(X) onto A2(X) by [10, Lemma 2.10]. Hence F2(X) is locally 
ω-bounded by Proposition 5.2. �

By Proposition 5.3, we obtain the main result in this section.

Theorem 5.5. If X is homeomorphic to the topological sum of an ω-bounded space and a discrete space, then 
F2(X) is locally ω-bounded.

6. Examples and questions

First, some examples are presented to show the applications of our results.

Example 6.1. There exists a first-countable space X such that F4(X) is an ω-bounded space (in particular, 
it is an r-space) and F2(X) is not of pointwise countable type.

Proof. Let X := [0, ω1) be endowed with the order topology. Then X is an ω-bounded and non-compact 
space. By Proposition 5.1, the subspace F4(X) is an ω-bounded space. Suppose that F2(X) is the space of 
pointwise countable type. Then the derived set X ′ is compact in X by [10, Lemma 2.1], and hence X is 
paracompact, which is a contradiction. �
Remark 6.2. (1) By Example 6.1, we can not omit the condition “μ-space” in Theorem 4.10.

(2) By Example 6.1, we know that X may not be compact in Theorem 4.5.

Example 6.3. There exists a space X such that F2(X) is an r-space and F4(X) is not an r-space.

Proof. Let X := [0, ω1) 
⊕

D, where [0, ω1) is endowed with the order topology and D is an uncountable 
set with a discrete topology. By Theorem 5.5, F2([0, ω1) 

⊕
D) is an r-space. However, it follows from 

Corollary 4.9 that F4([0, ω1) 
⊕

D) is not an r-space since [0, ω1) 
⊕

D is not pseudocompact. �
In [10], P. Nickolas and M. Tkachenko proved that F2(X) is locally compact iff A2(X) is locally compact 

iff X is homeomorphic to the topological sum of a compact space and a discrete space. From Theorem 5.5, 
it is natural to pose the following question.

Question 6.4. Let F2(X) be locally ω-bounded. Is X homeomorphic to the topological sum of an ω-bounded 
space and a discrete space?

Further, we have the following question.

Question 6.5. If F2(X) is a non-discrete r-space, is X homeomorphic to the topological sum of an ω-bounded 
space and a discrete space?
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In [10], P. Nickolas and M. Tkachenko proved that F2(X) is locally compact iff F3(X) is locally compact 
for any space. Therefore, it is natural to pose the following question.

Question 6.6. If F2(X) is an r-space (resp. q-space), is F3(X) also an r-space (q-space)?

By Theorem 4.5, we do not know the answer to the following question.

Question 6.7. Let X be a space. If F4(X) is a q-space, is X either countably compact or a cf -space?
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