CLOSED MAPPINGS, BOUNDARY-COMPACT MAPPINGS AND SEQUENCE-COVERING MAPPINGS

SHOU LIN AND ZHANGYONG CAI

Communicated by Yasunao Hattori

ABSTRACT. Yoshio Tanaka and Chuan Liu posed the following question in 1999: Let $f: X \to Y$ be a closed mapping. Under what conditions on X or Y, does $\partial f^{-1}(y)$ have some nice properties for every $y \in Y$?

In this paper, the following two related questions are discussed.

(1) When is a closed mapping to be a boundary-compact mapping or boundary-Lindelöf mapping?

(2) When is a sequence-covering boundary-compact mapping or boundary-Lindelöf mapping to be a 1-sequence-covering mapping?

The following results on generalized metric spaces are obtained, which answers a few questions in literature.

(a) Suppose that $f: X \to Y$ is a closed mapping, where X is a regular k-space with a point-countable k-network or a regular sequential space with a point-countable w-system. If Y contains no closed copy of S_{ω} , then f is a boundary-compact mapping.

(b) Suppose that $f: X \to Y$ is a closed mapping, where X is a k^* -metrizable k-space. If Y contains no closed copy of S_{ω_1} , then f is a boundary-s-mapping.

(c) Suppose that $f: X \to Y$ is a sequence-covering boundary-compact mapping. If X is first-countable, then f is a 1-sequence-covering mapping.

(d) Suppose that $f: X \to Y$ is a sequence-covering boundary-Lindelöf mapping, where X is first-countable. Then Y is snf-countable if and only if f is a 1-sequence-covering mapping.

Corresponding author: Shou Lin.

²⁰¹⁰ Mathematics Subject Classification. 54C10, 54D55, 54E20, 54E40.

Key words and phrases. Closed mappings; Boundary-compact mappings; Boundary-Lindelöf mappings; Sequence-covering mappings; k-networks; Sequential spaces; Fan spaces.

This research is supported by NSFC (Nos. 11471153), Guangxi Natural Science Foundation (No. 2013GXNSFBA019016) and Guangxi Science and Technology Research Projects (No. YB2014225).

¹⁰⁵⁹

SHOU LIN AND ZHANGYONG CAI

1. INTRODUCTION

Mappings are an important tool of investigating topological spaces. Recently, mutual relations among closed mappings, boundary-compact mappings and sequence-covering mappings have been one of the topics focused by topologists [3, 16, 21, 22, 29, 40, 41, 42, 49, 50]. Research concerning this topic mainly originated from the deepening to some mappings theorems on metrizable spaces.

The classic mapping theorem on metrizable spaces is as follows.

Theorem 1.1. [35, 45] Suppose that X is a metrizable space. If $f : X \to Y$ is a closed mapping, then the following are equivalent.

- (1) Y is a metrizable space.
- (2) Y is a first-countable space.
- (3) f is a boundary-compact mapping.

This shows that, under certain conditions, a closed mapping is boundarycompact and so inductively perfect and compact-covering. Tanaka and Liu [47] posed the following Question 1.2.

Question 1.2. [47] Let $f: X \to Y$ be a closed mapping. Under what conditions on X or Y, does $\partial f^{-1}(y)$ have some nice properties for every $y \in Y$?

This guides us to discuss following Question 1.3 in this paper.

Question 1.3. When is a closed mapping to be a boundary-compact mapping or boundary-Lindelöf mapping?

Theorem 1.1 implies that open and closed mappings preserve metrizability, where openness of mappings can not omitted, but can be weakened from different stand point. Siwiec [44] introduced sequence-covering mappings and proved that every open mapping on first-countable spaces is sequence-covering. This shows that sequence-covering mappings on metrizable spaces are a generalization of open mappings. Yan, Jiang and Lin [49] further proved that sequence-covering closed mappings preserve metrizability, where the key is to show that every sequence-covering compact mapping on metrizable spaces is 1-sequence-covering [25]. Every open mapping on first-countable spaces is also 1-sequence-covering [17].

These lead to following Question 1.4.

Question 1.4. When is a sequence-covering boundary-compact mapping or boundary-Lindelöf mapping to be a 1-sequence-covering mapping?

In this paper, we mainly discuss Questions 1.3 and 1.4 on generalized metric spaces, in particular, affirmatively answer following Questions 1.5.

Question 1.5. [16, Question 3.1] Is every sequence-covering boundary-compact mapping on the spaces in which every compact subset has a countable neighbourhood base 1-sequence-covering? More generally, is every sequence-covering boundary-compact mapping on first-countable spaces 1-sequence-covering?

The paper is organized as follows.

In Sections 2 and 3, around Questions 1.2 and 1.3, we discuss the properties of closed mappings on the spaces with a point-countable k-network or k^* -metrizable spaces.

In Sections 4 and 5, around Questions 1.4 and 1.5, we mainly discuss the properties of sequentially quotient or sequence-covering boundary-compact mappings on the spaces in which every compact subset has a countable *sn*-network, and investigate the properties of sequence-covering boundary-compact mappings or boundary-Lindelöf mappings on first-countable spaces.

In addition, a few questions are also posed.

Recall some concepts relevant to mappings or k-networks.

Definition 1.6. Let $f : X \to Y$ be a mapping.

(1) f is called a *boundary-compact mapping* (resp. *boundary-Lindelöf mapping*, *boundary-s-mapping*), if $\partial f^{-1}(y)$ is compact (resp. Lindelöf, separable) for every $y \in Y$.

(2) f is a compact-covering mapping [30] if for every compact subset K of Y, there exists a compact subset L of X such that f(L) = K.

(3) f is a sequence-covering mapping [44] if $\{y_n\}$ is a convergent sequence in Y, there is a convergent sequence $\{x_n\}$ in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$.

(4) f is a pseudo-sequence-covering mapping [13, 14] if for every convergent sequence L including its limit point in Y, there exists a compact subset K of X such that f(K) = L.

(5) f is a subsequence-covering mapping [23] if $\{y_n\}$ is a convergent sequence including its limit point in Y, there exists a compact subset K of X such that f(K) is a subsequence of $\{y_n\}$.

(6) f is a sequentially quotient mapping [4] if $\{y_n\}$ is a convergent sequence in Y, there exists a convergent sequence $\{x_k\}$ in X such that the sequence $\{f(x_k)\}$ is a subsequence of the sequence $\{y_n\}$.

(7) f is a 1-sequence-covering mapping [17] if for every $y \in Y$, there exists a point $x \in f^{-1}(y)$ such that whenever a sequence $\{y_n\}$ converges to y in Y, there is a sequence $\{x_n\}$ converging to x in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$.

The following implications about mappings are evident.

1-sequence-covering \longrightarrow sequence-covering \longrightarrow sequentially quotient

compact-covering \longrightarrow pseudo-sequence-covering \longrightarrow subsequence-covering

Definition 1.7. Let \mathcal{P} be a family of subsets of a topological space X and $A \subset X$. The symbol $cl_1(A)$ denotes the set consisting of the limits of convergent sequences of points of A in X.

(1) \mathcal{P} is a *network* [2] for X if for every point $x \in X$ and any neighbourhood U of x, there exists a $P \in \mathcal{P}$ such that $x \in P \subset U$.

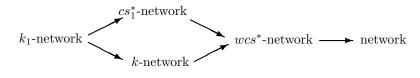
(2) \mathcal{P} is a *k*-network [36] for X if whenever K is a compact subset of an open set U, there exists a finite subfamily $\mathcal{F} \subset \mathcal{P}$ such that $K \subset \cup \mathcal{F} \subset U$.

(3) \mathcal{P} is a wcs^* -network [24] for X if whenever $\{x_n\}$ is a sequence converging to a point $x \in U$ with U open in X, then $\{x_{n_i} : i \in \mathbb{N}\} \subset P \subset U$ for some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and some $P \in \mathcal{P}$.

(4) \mathcal{P} is a cl_1 -osed k-network [3] (briefly, k_1 -network) for X if whenever K is a compact subset of an open set U, there exists a finite subfamily $\mathcal{F} \subset \mathcal{P}$ such that $K \subset \cup \mathcal{F} \subset cl_1(\cup \mathcal{F}) \subset U$.

(5) \mathcal{P} is a cl_1 -osed cs^* -network [3] (briefly, cs_1^* -network) for X if whenever $\{x_n\}$ is a sequence converging to a point $x \in U$ with U open in X, then $\{x_{n_i} : i \in \mathbb{N}\} \subset P \subset cl_1(P) \subset U$ for some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and some $P \in \mathcal{P}$.

Obviously, every k-network (resp. wcs^* -network) in regular spaces is a k_1 -network (resp. cs_1^* -network). The following implications are also evident.



For an infinite cardinal number κ , the fan space S_{κ} [46] is the quotient space obtained by identifying all limit points of the topological sum of κ many convergent sequences. We only use S_{ω} and S_{ω_1} in the paper.

In what follows, all topological spaces are assumed to be Hausdorff and all mappings are continuous and surjective. For some terminology unstated here, readers may refer to [11].

2. BOUNDARY-COMPACT MAPPINGS

The following theorem complements Theorem 1.1.

Theorem 2.1. [46] Let $f : X \to Y$ be a closed mapping, where X is a metrizable space. If Y contains no closed copy of S_{ω} , then f is a boundary-compact mapping.

In this section, around Question 1.3, we shall discuss which generalized metric spaces Theorem 2.1 can be generalized to.

A topological space X is said to be sequentially separable [7], if there exists a countable subset $D \subset X$ such that $cl_1(D) = X$, where D is called a sequentially dense subset of X.

Lemma 2.2. Suppose that X is a sequentially separable space. If X has a pointcountable cs_1^* -network, then it has a countable network.

PROOF. Let D be a sequentially dense subset of X and \mathcal{P} a point-countable cs_1^* network. Then $\mathcal{F} = \{ cl_1(P) : P \in \mathcal{P}, P \cap D \neq \emptyset \}$ is countable. Let $x \in U$ with Uopen in X. There exists a sequence $\{x_n\}$ of points of D such that $\{x_n\}$ converges
to x in X, and $\{x_{n_i} : i \in \mathbb{N}\} \subset P \subset cl_1(P) \subset U$ for some subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and some $P \in \mathcal{P}$. Thus $cl_1(P) \in \mathcal{F}$ and $x \in cl_1(P) \subset U$. Hence \mathcal{F} is a
countable network for X.

A topological space X is called a sequential space [9] if a set $A \subset X$ is closed if and only if together with any sequence it contains its limit. A topological space X is of countable tightness [32] if whenever $x \in \overline{A}$ in X, then $x \in \overline{C}$ for some countable $C \subset A$. Every sequential space is of countable tightness [32].

Lemma 2.3. Let $f: X \to Y$ be a closed mapping, where X is a sequential space and Y contains no closed copy of S_{ω} . If every sequentially separable subspace of X is normal, then $\partial f^{-1}(y)$ is a countably compact subset of X for every $y \in Y$.

PROOF. For every $y \in Y$, put $A = f^{-1}(y) \cap cl_1(X \setminus f^{-1}(y))$. (3.1) $\overline{A} = \partial f^{-1}(y)$.

Obviously, $\overline{A} \subset \partial f^{-1}(y)$. It is easy to see the set $\overline{A} \cup (X \setminus f^{-1}(y))$ is sequentially closed. Since X is sequential, the set $U = f^{-1}(y) \cap (X \setminus \overline{A})$ is open and $\partial f^{-1}(y) \setminus \overline{A} \subset U$, thus $\overline{A} = \partial f^{-1}(y)$.

Now, we shall show that $\partial f^{-1}(y)$ is a countably compact subset of X for every $y \in Y$.

Otherwise, $\partial f^{-1}(y)$ contains an infinite closed discrete subset $\{x_n : n \in \mathbb{N}\}$. For every $n \in \mathbb{N}$, by (3.1), $x_n \in \overline{A}$ and there exists a countable subset $\{x_{n,m} : m \in \mathbb{N}\} \subset A$ such that $x_n \in \overline{\{x_{n,m} : m \in \mathbb{N}\}}$, since X is of countable tightness. For every $n, m \in \mathbb{N}$, there exists a sequence $L_{n,m}$ of points of $X \setminus f^{-1}(y)$ converging to $x_{n,m}$ in X. Let

$$D = \operatorname{cl}_1(\{x_n : n \in \mathbb{N}\} \cup \bigcup \{L_{n,m} : n, m \in \mathbb{N}\})$$

Obviously, $\{x_n : n \in \mathbb{N}\} \subset D$ and the subspace D is sequentially separable. By the hypothesis, D is a normal space. There exists a discrete family $\{U_n : n \in \mathbb{N}\}$ of open subsets in D such that $x_n \in U_n$ for every $n \in \mathbb{N}$. For every $n \in \mathbb{N}$, choose $m_n \in \mathbb{N}$ such that $x_{n,m_n} \in U_n$. Since L_{n,m_n} converges to x_{n,m_n} in D, without loss of generality, we may assume that $L_{n,m_n} \subset U_n$ for every $n \in \mathbb{N}$. For every $n \in \mathbb{N}$, write $P_n = L_{n,m_n}$, thus $y \notin f(P_n)$ and the sequence $f(P_n)$ converges to y in Y.

(3.2) $\bigcup_{n \in \mathbb{N}} Q_n$ is a closed discrete subset of X, where Q_n is a finite subset of P_n for every $n \in \mathbb{N}$.

Otherwise, since X is a sequential space, there exists a sequence $\{b_k\}$ converging to some point $b \notin \bigcup_{n \in \mathbb{N}} Q_n$ in X such that $b_k \in Q_{n_k} \subset U_{n_k}$ for every $k \in \mathbb{N}$ with $n_1 < n_2 < \cdots$. Thus $b \in D$ and $\{b_k : k \in \mathbb{N}\}$ is not closed in D, which contradicts the fact that $\{U_{n_k} : k \in \mathbb{N}\}$ is discrete in D. Hence, $\bigcup_{n \in \mathbb{N}} Q_n$ is closed, further, is closed discrete in X.

For every $n \in \mathbb{N}$, there exist a finite subset F_n of $f(P_n)$ and $n_k \in \mathbb{N}$ such that

$$f(P_n) \cap \bigcup_{m \ge n_k} f(P_m) \subset F_n$$

Otherwise, there exist a non-trivial sequence $\{y_i\}$ of points of $f(P_n)$ and a sequence $\{f(P_{k_i})\}$ such that $y_i \in f(P_{k_i})$ for every $i \in \mathbb{N}$. According to (3.2) and the closedness of f, the set $\{y_i : i \in \mathbb{N}\}$ is a closed discrete subset of Y. This is a contradiction. Now, we can assume that $n_k < n_{k+1}$ for each $k \in \mathbb{N}$. For every $k \in \mathbb{N}$, let $K_k = f(P_{n_k}) \setminus F_{n_k}$. Then the sequence K_k converges to y in Y for every $k \in \mathbb{N}$ and $\{K_k : k \in \mathbb{N}\}$ is a pairwise disjoint family.

Put $S = \{y\} \cup \bigcup_{k \in \mathbb{N}} K_k$. Since X is a sequential space and f is closed, Y is also a sequential space. Using again (3.2) and the closedness of f, we conclude that S is closed in Y and S is homeomorphic to S_{ω} . This contradicts the hypothesis that Y contains no closed copy of S_{ω} . In a word, $\partial f^{-1}(y)$ is a countably compact subset of X for every $y \in Y$.

Lemma 2.4. [24] Suppose that X is a countably compact sequential space with a point-countable wcs^* -network. Then X is a compact metrizable space.

Lemma 2.5. [13] Every k-space with a point-countable k-network is a sequential space.

Theorem 2.6. Suppose that $f : X \to Y$ is a closed mapping, where X is a regular k-space with a point-countable k-network. If Y contains no closed copy of S_{ω} , then f is a boundary-compact mapping.

PROOF. Since X is a regular space with a point-countable k-network, X has a point-countable cs_1^* -network. By Lemma 2.2, every sequentially separable subspace of X has a countable network, and so is normal. Lemmas 2.3, 2.4 and 2.5 imply together that f is a boundary-compact mapping.

Let X be a topological space and $x \in X$. A subset G of X is called a *sequential* neighborhood of x in X if any sequence $\{x_n\}$ converging to x is eventually in G, i.e., $\{x_n : n \ge k_0\} \cup \{x\} \subset G$ for some $k_0 \in \mathbb{N}$. Let \mathcal{W} be a family of subsets of a topological space X. \mathcal{W} is called a *w*-system [6] for X, if for every $x \in X$ and every open neighbourhood U of x in X, there exists a subfamily $\mathcal{V} \subset \mathcal{W}$ such that $x \in \cap \mathcal{V}, \cup \mathcal{V} \subset U$ and $\cup \mathcal{V}$ is a sequential neighbourhood of x in X.

Burke [6, Proposition 4.2, Theorem 4.4] obtained the following results.

(1) Quotient s-images of metric spaces are a sequential space with a pointcountable w-system.

(2) Sequential spaces with a point-countable w-system are a D-space¹.

Next, we shall discuss Questions 1.2 and 1.3 on sequential spaces with a pointcountable *w*-system. In order to make better use of *w*-systems, we introduce a new notion. Let \mathcal{P} be a family of subsets of a topological space X. \mathcal{P} is called a *cs'-network* for X, if whenever $\{x_n\}$ is a sequence converging to a point $x \in U$ with U open in X, then $\{x, x_m\} \subset P \subset U$ for some $m \in \mathbb{N}$ and some $P \in \mathcal{P}$.

Lemma 2.7. Let \mathcal{P} be a family of subsets of a topological space X. Then \mathcal{P} is a cs'-network for X if and only if \mathcal{P} is a w-system for X.

PROOF. Necessity. Let \mathcal{P} be a cs'-network for X and U be an open neighbourhood of a point x in X. Put $\mathcal{V} = \{P \in \mathcal{P} : x \in P \subset U\}$. Then $x \in \cap \mathcal{V}$ and $\cup \mathcal{V} \subset U$. Assume that $\cup \mathcal{V}$ is not a sequential neighbourhood of x in X. Then there exists a sequence $\{x_n\}$ converging to x such that $x_n \notin \cup \mathcal{V}$ for every $n \in \mathbb{N}$. Since \mathcal{P} is a cs'-network for X, then $\{x, x_m\} \subset P \subset U$ for some $m \in \mathbb{N}$ and some $P \in \mathcal{P}$. Thus $x_m \in P \subset \cup \mathcal{V}$. This is a contradiction. Hence \mathcal{P} is a w-system for X.

Sufficiency. Let \mathcal{P} be a *w*-system for X and $\{x_n\}$ be a sequence converging to a point $x \in U$ with U open in X. There exists a subfamily $\mathcal{V} \subset \mathcal{P}$ such that $x \in \cap \mathcal{V}, \ \cup \mathcal{V} \subset U$ and $\cup \mathcal{V}$ is a sequential neighbourhood of x in X. We may choose $m \in \mathbb{N}$ and $P \in \mathcal{V}$ such that $x_m \in P$. Hence $\{x, x_m\} \subset P \subset U$ and \mathcal{P} is a *cs'*-network for X.

Theorem 2.8. Suppose that $f : X \to Y$ is a closed mapping, where X is a regular sequential space with a point-countable w-system. If Y contains no closed copy of S_{ω} , then f is a boundary-compact mapping.

¹A neighbourhood assignment of a topological space (X, τ) is a function $\phi : X \to \tau$ satisfying $x \in \phi(x)$ for every $x \in X$. A topological space X is called a *D*-space [8] if for every neighbourhood assignment ϕ of X, there exists a closed discrete subset D of X such that $\{\phi(x) : x \in D\}$ covers X.

PROOF. Since every sequential space with a point-countable *w*-system is a *D*-space [6, Theorem 4.4] and every countably compact *D*-space is compact, by Lemma 2.3, it suffices to show that every sequentially separable subspace of *X* has a countable network. Let *A* be a sequentially separable subspace of *X* and *D* be a sequentially dense subset of *A*. By Lemma 2.7, *X* has a point-countable *cs'*-network \mathcal{P} . Let $\mathcal{F} = \{P \cap A : P \in \mathcal{P}, P \cap D \neq \emptyset\}$. Obviously, \mathcal{F} is countable. Let $x \in U \cap A$ with *U* open in *X*. Then there exists a sequence $\{d_n\}$ of points of *D* converging to *x* in *A*. So $\{x, d_m\} \subset P \subset U$ for some $m \in \mathbb{N}$ and some $P \in \mathcal{P}$. Then $P \cap A \in \mathcal{F}, x \in P \cap A \subset U \cap A$ and \mathcal{F} is a countable network for *A*.

Corollary 2.9. Let $f : X \to Y$ be a closed mapping, where X is regular. If one of following conditions is satisfied, then f is a compact-covering mappings:

(1) X is a sequential space with a point-countable w-system.

(2) X is a k-space with a point-countable k-network [22].

PROOF. Let K be a compact subset of Y. Put $L = f^{-1}(K)$ and $g = f|_L : L \to K$. Since K contains no closed copy of S_{ω} , by Theorems 2.8 and 2.6, g is a boundary-compact mapping. Therefore, there is a closed subspace Z of L such that $g|_Z : Z \to K$ is a perfect mapping. Then $(g|_Z)^{-1}(K)$ is a compact subset of Z and $f((g|_Z)^{-1}(K)) = K$. So f is a compact-covering mapping. \Box

Remark 2.10. (1) [43] There exists a closed mapping $f : X \to Y$ such that f is not compact-covering, where X has a countable base, and $Y = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ with the usual topology.

(2) [39] There exists a closed mapping $f: X \to Y$ such that f is not compactcovering, where X is a regular space with a point-countable k-network and a point-countable w-system, and every compact subset of X is finite.

(3) There exists a paracompact sequential space with a point-countable k-network, but without a point-countable w-system.

In fact, the fan space S_{ω_1} is such a space. It is easy to see that S_{ω_1} , as a closed image of a metric space, is a paracompact sequential space with a point-countable k-network. We shall show that S_{ω_1} does not have a point-countable w-system or point-countable cs'-network. Indeed, write $S_{\omega_1} = \{s\} \cup \bigcup_{\alpha < \omega_1} X_{\alpha}$, where X_{α} converges to s for every $\alpha < \omega_1$. Assume that S_{ω_1} has a point-countable cs'-network \mathcal{P} . Write

$$\{P \in \mathcal{P} : s \in P, |\{\alpha < \omega_1 : X_\alpha \cap P \neq \emptyset\} \ge \omega|\} = \{P_n : n \in \mathbb{N}\}.$$

By induction, we pick a subset $\{x_n : n \in \mathbb{N}\}$ of S_{ω_1} such that $x_n \in P_n \cap X_{\alpha_n}$, where $X_{\alpha_i} \cap X_{\alpha_j} \neq \emptyset$ for any two distinct $i, j \in \mathbb{N}$. Then the set $\{x_n : n \in \mathbb{N}\}$ is closed in S_{ω_1} . Let

$$V = S_{\omega_1} \setminus \{x_n : n \in \mathbb{N}\},\$$

$$\mathcal{F} = \{P \in \mathcal{P} : P \subset V\},\$$

$$H = \cup \{F \in \mathcal{F} : s \in F\}.\$$

If $s \in P \in \mathcal{F}$, then $P \notin \{P_n : n \in \mathbb{N}\}$ and so P intersects only finitely many X_{α} 's. Thus H intersects only countably many X_{α} 's. We choose $\beta < \omega_1$ such that $X_{\beta} \cap H = \emptyset$. Let $V \cap X_{\beta} = \{v_n : n \in \mathbb{N}\}$. Then the sequence $\{v_n\}$ converges to $s \in V$ and so $\{s, v_m\} \subset P$ for some $m \in \mathbb{N}$ and some $P \in \mathcal{F}$. Hence $v_m \in X_{\beta} \cap H$. This is a contradiction.

(4) There exists a paracompact sequential space with a point-countable w-system, but without a point-countable k-network.

Indeed, there exists a non-first-countable, strongly Fréchet, countable and regular space S [38, Example 2.3]. Obviously, S is a paracompact sequential space. Since a regular strongly Fréchet space with a point-countable k-network is firstcountable [13, Corollary 3.6], the space S does not have a point-countable knetwork. Write $S = \{s_n : n \in \mathbb{N}\}$. Let $\mathcal{P} = \{\{s_n, s_m\} : n, m \in \mathbb{N}\}$. Then \mathcal{P} is a countable cs'-network for S. Namely, \mathcal{P} is a countable w-system for S by Lemma 2.7.

3. BOUNDARY-LINDELÖF MAPPINGS

Tanaka [46] established the following mapping theorem on metrizable spaces.

Theorem 3.1. [46] Let $f : X \to Y$ be a closed mapping, where X is a metrizable space. If Y contains no closed copy of S_{ω_1} , then f is a boundary-Lindelöf mapping.

Much research shows that Theorem 3.1 can be generalized to some generalized metric spaces [13, 21, 28, 29]. In this section, we mainly discuss the mapping theorems on k^* -metrizable spaces.

Definition 3.2. [3] A topological space is called a k^* -metrizable space if there exist a metric space M and a mapping $f: M \to X$ satisfying the following (*).

(*) There exists a subspace $Z \subset M$ such that f(Z) = X, and if K is precompact² in X, then $Z \cap f^{-1}(K)$ is precompact in M.

The new class of k^* -metrizable spaces, which was also collected in [12] by Gruenhage, has involved various applications in topological algebra, functional analysis and measure theory.

²A subset A of a topological space X is *precompact* in X, if \overline{A} is a compact subset of X.

A family \mathcal{P} of subsets of a topological space X is said to be *compact-finite* (resp. *compact-countable*), if $(\mathcal{P})_K = \{P \in \mathcal{P} : P \cap K \neq \emptyset\}$ is finite (resp. countable) for every compact subset K of X.

Lemma 3.3. [3] A topological space X is k^* -metrizable if and only if X has a σ -compact-finite k_1 -network.

A topological X is ω_1 -compact if every uncountable subset of X has an accumulation point.

Lemma 3.4. Let \mathcal{P} be a compact-finite family of a k-space X. If A is an ω_1 compact subset of X, then $(\mathcal{P})_A$ is countable.

PROOF. Suppose $(\mathcal{P})_A$ is not countable. Since \mathcal{P} is point-finite, there exist a subfamily $\mathcal{F} = \{P_\alpha : \alpha < \omega_1\} \subset \mathcal{P}$ and a subset $B = \{x_\alpha : \alpha < \omega_1\} \subset A$ satisfying

(1) $x_{\alpha} \in P_{\alpha}$ for every $\alpha < \omega_1$; and

(2) $x_{\alpha} \neq x_{\beta}$ and $P_{\alpha} \neq P_{\beta}$ for any two distinct $\alpha, \beta < \omega_1$.

The space A being ω_1 -compact, let x be an accumulation point of B in A, whence the set $B \setminus \{x\}$ is not closed in X. Since X is a k-space, there is a compact subset K of X such that $(B \setminus \{x\}) \cap K$ is not closed in K. Then $(B \setminus \{x\}) \cap K$ is infinite, which contradicts the hypothesis that \mathcal{P} is compact-finite for X. \Box

Theorem 3.5. Let $f: X \to Y$ be a closed mapping, where X is a k^* -metrizable k-space. If Y contains no closed copy of S_{ω_1} , then f is a boundary-s-mapping.

PROOF. By Lemma 3.3, X has a σ -compact-finite k_1 -network \mathcal{P} . By Lemma 2.5, X is a sequential space. For every $y \in Y$, put $A = f^{-1}(y) \cap \operatorname{cl}_1(X \setminus f^{-1}(y))$.

We shall prove that A is an ω_1 -compact subset of X.

Otherwise, there exists an uncountable closed discrete subset $D = \{x_{\alpha} : \alpha < \omega_1\}$ in A. For every $\alpha < \omega_1$, choose an open neighbourhood V_{α} of x_{α} in X such that $V_{\alpha} \cap \overline{D} \setminus \{x_{\alpha}\} = \emptyset$. Since $x_{\alpha} \in A \cap V_{\alpha}$, there exists a sequence L_{α} of points of $(X \setminus f^{-1}(y)) \cap V_{\alpha}$ converging to x_{α} in X. Since \mathcal{P} is a k_1 -network for X, without loss of generality, we choose $P_{\alpha} \in \mathcal{P}$ such that $L_{\alpha} \subset P_{\alpha} \subset cl_1(P_{\alpha}) \subset V_{\alpha}$, which implies that $x_{\alpha} \in cl_1(P_{\alpha}) \subset X \setminus \overline{D} \setminus \{x_{\alpha}\}$. Thus $P_{\alpha} \neq P_{\beta}$ for any two distinct $\alpha, \beta < \omega_1$. Since \mathcal{P} is σ -compact-finite, we may assume that the family $\mathcal{F} = \{P_{\alpha} : \alpha < \omega_1\}$ is compact-finite. For every $\alpha < \omega_1$, the compact set $\overline{L_{\alpha}}$ intersects only finitely many elements of \mathcal{F} , and it can be considered that $\overline{L_{\alpha}} \cap \overline{L_{\beta}} = \emptyset$ for any two distinct $\alpha, \beta < \omega_1$.

(5.1) $\bigcup_{\alpha < \omega_1} Q_\alpha$ is a closed discrete subset of X, where Q_α is a finite subset of L_α for every $\alpha < \omega_1$.

In fact, for every compact subset K of X, since \mathcal{F} is compact-finite, we conclude that $K \cap \bigcup_{\alpha < \omega_1} Q_{\alpha}$ is finite and so is closed in X. The space X being a k-space, $\bigcup_{\alpha < \omega_1} Q_{\alpha}$ is a closed discrete subset of X.

For every $\alpha < \omega_1$, we have that $y \notin f(L_\alpha)$ and the sequence $f(L_\alpha)$ converges to y in Y. According to (5.1), in a way similar to Lemma 2.3, without loss of generality, we can prove that for every $\alpha < \omega_1$, there exists a finite subset F_α of $f(L_\alpha)$ such that Y contains a closed copy $\{y\} \cup \bigcup_{\alpha < \omega_1} (f(L_\alpha) \setminus F_\alpha)$ of S_{ω_1} . This is a contradiction. Hence, A is an ω_1 -compact subset of X.

Now, by Lemma 3.4, the space A has a countable k-network, and so is separable. From the proof of (3.1) in Lemma 2.3, we conclude that $\overline{A} = \partial f^{-1}(y)$ is separable.

Banakh, Bogachev and Kolesnikov [3] proved that, under **CH**, every separable k^* -metrizable regular space has a countable k-network.

Corollary 3.6. Under **CH**, let $f : X \to Y$ be a closed mapping, where X is a regular k^* -metrizable k-space. If Y contains no closed copy of S_{ω_1} , then f is a boundary-Lindelöf-mapping.

Question 3.7. Let $f: X \to Y$ be a closed mapping, where X is a k-space with a compact-countable k-network. Is f a boundary-s-mapping if Y contains no closed copy of S_{ω_1} ?

In Question 3.7, if X is replaced by a Moore space or a regular space with a σ -locally finite k-network, then the answer is negative [20, Example 3.4.19].

4. PSEUDO-SEQUENCE-COVERING MAPPINGS

Michael [33] proved that there exists a pseudo-sequence-covering quotient and compact mapping $f: X \to Y$ such that f is not compact-covering, where X is a separable metrizable space and Y is a compact metrizable space. This shows that there is a vast difference between pseudo-sequence-covering mappings and compact-covering mappings. However, every sequentially quotient and boundarycompact mapping on metrizable spaces is pseudo-sequence-covering [15]. In the other hand, every subsequence-covering mapping on a space in which every compact subset is metrizable is sequentially quotient. In this section, we shall further prove that every sequentially quotient and boundary-compact mapping on some generalized metric spaces is pseudo-sequence-covering.

If a topological space X is the open compact image of a metric space, then every sequentially quotient and boundary-compact mapping on X is pseudo-sequencecovering [16, Theorem 3.11]. Using outer bases, Michael and Nagami [34] proved that a topological space X is the open compact image of a metric space if and only if every compact subset K of X is metrizable has a countable neighbourhood base in X. Let us recall the definitions of *sn*-networks and outer *sn*-networks.

Let X be a topological space and $A \subset X$. A subset G of X is called a *sequential* neighborhood of A in X if any sequence converging to some point of A is eventually in G.

Definition 4.1. Let X be a topological space and $x \in X$.

(1) A family \mathcal{P}_x of subsets of X is called a *network* of x in X, if $x \in \cap \mathcal{P}_x$ and for $x \in U$ with U open in X, $P \subset U$ for some $P \in \mathcal{P}_x$.

(2) A family \mathcal{P}_x of subsets of X is called a sequential neighbourhood network (briefly, sn-network) of x in X [17], if the following conditions (a)–(c) hold.

(a) \mathcal{P}_x is a network of x in X;

(b) every element of \mathcal{P}_x is a sequential neighborhood of x in X; and

(c) if $U, V \in \mathcal{P}_x$, then $W \subset U \cap V$ for some $W \in \mathcal{P}_x$.

Michael [31] made use of outer networks to investigate images of metric spaces. Outer bases and outer *sn*-networks are relevant to outer networks.

Definition 4.2. Let A be a non-empty subset of a topological space X.

(1) $\bigcup_{x \in A} \mathcal{P}_x$ is called an *outer sn-network* [27] (resp. an *outer base* [34]) of A in X, where \mathcal{P}_x is an *sn*-network (resp. a neighbourhood base) of x in X for every $x \in A$.

(2) A family \mathcal{P} of subsets of X is called an *sn-network* [27] (resp. a *neighbourhood base* [34]) of A in X, if every element of \mathcal{P} is a sequential neighbourhood (resp. a neighbourhood) of every point of A in X and for every open subset V of X containing A, there exists a $P \in \mathcal{P}$ such that $P \subset V$.

We have the following lemma about the relation between outer sn-networks and sn-networks.

Lemma 4.3. [27] Let K be a compact subset of a topological space X. Then K is metrizable and has a countable sn-network in X if and only if K has a countable outer sn-network \mathcal{H} in X satisfying that every element of \mathcal{H} is of the form $U \cap V$, where U is open in X and V is a sequential neighbourhood of K in X.

Lemma 4.4. Let $f : X \to Y$ be a sequentially quotient mapping. If $y \in Y$ and $\partial f^{-1}(y)$ has a countable sn-network in X, then the point y has a countable sn-network in Y.

PROOF. Let $\{V_n : n \in \mathbb{N}\}$ be a countable *sn*-network of $\partial f^{-1}(y)$ in X, where $V_{n+1} \subset V_n$ for every $n \in \mathbb{N}$. We shall show that $\{f(V_n) : n \in \mathbb{N}\}$ is an *sn*-network of y in Y.

(4.1) $\{f(V_n) : n \in \mathbb{N}\}$ is a network of y in Y.

Let U be an open neighbourhood of y in Y. Then $f^{-1}(U) \supset \partial f^{-1}(y)$ and so there exists an $n \in \mathbb{N}$ such that $V_n \subset f^{-1}(U)$. Thus $y \in f(V_n) \subset U$.

(4.2) For every $n \in \mathbb{N}$, $f(V_n)$ is a sequential neighbourhood of y in Y.

Assume that $f(V_n)$ is not a sequential neighbourhood of y in Y for some $n \in \mathbb{N}$. Then there exists a sequence $\{y_i\}$ converging to y in Y such that $y_i \notin f(V_n)$ for every $i \in \mathbb{N}$. Since f is a sequentially quotient mapping, there exists a sequence $\{x_k\}$ converging to some point $x \in X$ in X such that $x_k \in f^{-1}(y_{i_k})$ for every $k \in \mathbb{N}$. Then $x \in \partial f^{-1}(y) \subset V_n$. Because V_n is a sequential neighbourhood of x in X, $\{x_k\}$ is eventually in V_n and $\{y_{i_k}\}$ is eventually in $f(V_n)$. This is a contradiction. \Box

Theorem 4.5. Suppose that $f: X \to Y$ is a sequentially quotient and boundarycompact mapping. If every compact subset of X is has a countable sn-network in X, then f is a pseudo-sequence-covering mapping.

PROOF. Suppose that $\{y_n\}$ converges to y_0 in Y. Let

$$S_1 = \{y_0\} \cup \{y_n : n \in \mathbb{N}\}, X_1 = f^{-1}(S_1) \text{ and } g = f|_{X_1} : X_1 \to S_1.$$

Then g is also a sequentially quotient and boundary-compact mapping. Let $\{V_n : n \in \mathbb{N}\}$ be a countable *sn*-network of the compact set $\partial g^{-1}(y_0)$ in X_1 , where $V_{n+1} \subset V_n$ for every $n \in \mathbb{N}$. By Lemma 4.4, $\{g(V_n) : n \in \mathbb{N}\}$ is an *sn*-network of y_0 in S_1 . For every $n \in \mathbb{N}$, there exists an $i_n \in \mathbb{N}$ such that $g^{-1}(y_i) \cap V_n \neq \emptyset$ when $i \geq i_n$. Without loss of generality, we assume that $1 < i_n < i_{n+1}$ for every $n \in \mathbb{N}$, pick

$$x_j \in \begin{cases} f^{-1}(y_j), & j < i_1; \\ f^{-1}(y_j) \cap V_n, & i_n \le j < i_{n+1}. \end{cases}$$

Let $K = \partial g^{-1}(y_0) \cup \{x_j : j \in \mathbb{N}\}$. Since $\{V_n : n \in \mathbb{N}\}$ is an *sn*-network of $\partial g^{-1}(y_0)$ in X_1 , the sequence $\{x_j\}$ is eventually in every neighbourhood of $\partial g^{-1}(y_0)$ in X_1 . Since $\partial g^{-1}(y_0)$ is a compact subset of X_1 , K is also compact of X_1 by [30, Lemma 8.1]. Obviously, $f(K) = S_1$. So f is a pseudo-sequence-covering mapping. \Box

Corollary 4.6. [16, Corollary 3.12] Suppose that $f : X \to Y$ is a sequentially quotient and boundary-compact mapping. If X satisfies one of the following conditions, then f is a pseudo-sequence-covering mapping.

(1) X has a point-countable base.

(2) X is a developable space.

PROOF. According to Theorem 4.5, it suffices to show that every compact subset of a space X with a point-countable base or a development has a countable neighbourhood base in X.

Since X is a space with a point-countable base or a developable space, it follows from [34, Theorem 1.3] or [48, Theorem 1] that X is a compact-covering open image of a metric space. Thus, by [34, Theorem 1.2], every compact subset of X has a countable neighborhood base in X.

Question 4.7. Is every sequentially quotient and boundary-compact mapping on first-countable spaces pseudo-sequence-covering?

5. 1-sequence-covering mappings

In this section, we discuss Question 1.4 and give an affirmative answer to Question 1.5.

Lemma 5.1. Let $f : X \to Y$ be a sequence-covering mapping and $y \in Y$. If $\{F_i : i \in \mathbb{N}\}$ is a decreasing network of y in Y and $\partial f^{-1}(y)$ is a non-empty Lindelöf subset of X. Then there exists a point $x_y \in \partial f^{-1}(y)$ such that if U is a neighbourhood of x_y in X, $F_i \subset f(U)$ for some $i \in \mathbb{N}$.

PROOF. Suppose the conclusion is not true. Then, for every $x \in \partial f^{-1}(y)$, there exists an open neighbourhood U_x of x in X such that $F_i \not\subset f(U_x)$ for every $i \in \mathbb{N}$. Since $\{U_x : x \in \partial f^{-1}(y)\}$ covers $\partial f^{-1}(y)$, there exists a countable subfamily $\mathcal{U} = \{U_{x_j} : j \in \mathbb{N}\}$ of $\{U_x : x \in \partial f^{-1}(y)\}$ covers $\partial f^{-1}(y)$. For every $i, j \in \mathbb{N}$, there exists a point $z_{i,j} \in F_i \setminus f(U_{x_j})$. For every $i, j \in \mathbb{N}$ and $i \geq j$, let $y_k = z_{i,j}$, where $k = j + \frac{i(i-1)}{2}$. Since $\{F_i : i \in \mathbb{N}\}$ is a decreasing network of y in Y, the sequence $\{y_k\}$ converges to y in Y. The mapping f being sequence-covering, there exists a sequence $\{u_k\}$ converging to some point $u \in \partial f^{-1}(y)$ in X such that $f(u_k) = y_k$ for every $k \in \mathbb{N}$. Pick $j_0 \in \mathbb{N}$ such that $u \in U_{x_{j_0}}$. Thus there exists a $k_0 \in \mathbb{N}$ such that $\{u_k : k > k_0\} \subset U_{x_{j_0}}$. Pick $i_0 \geq j_0$ such that $k = j_0 + \frac{i_0(i_0-1)}{2} > k_0$. Then $z_{i_0,j_0} = y_k = f(u_k) \in f(U_{x_{j_0}})$. This is a contradiction.

Lemma 5.2. [17] Let $f : X \to Y$ be a mapping, $\{B_n : n \in \mathbb{N}\}$ be a decreasing network of some point x in X and $\{y_i\}$ be a sequence converging to f(x) in Y. If $\{y_i\}$ is eventually in $f(B_n)$ for every $n \in \mathbb{N}$, then there is a sequence $\{x_n\}$ converging to x in X such that $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$.

A topological space X is said to be snf-countable [18], if every point of X has a countable sn-network. Obviously, every first-countable space is snf-countable.

Theorem 5.3. Suppose that $f : X \to Y$ is a sequence-covering boundary-Lindelöf mapping, where X is first-countable. Then Y is snf-countable if and only if f is a 1-sequence-covering mapping.

PROOF. Necessity. Let $y \in Y$ and $\{F_i : i \in \mathbb{N}\}$ be a decreasing *sn*-network of y in Y. Without loss of generality, we assume that there exists a non-trivial sequence converging to y in Y. Thus $f^{-1}(y)$ is not open in X and so $\partial f^{-1}(y) \neq \emptyset$. By Lemma 5.1, there exists a point $x \in \partial f^{-1}(y)$ such that if U is a neighbourhood of x in X, then $F_i \subset f(U)$ for some $i \in \mathbb{N}$ and so f(U) is a sequential neighbourhood of y in Y. Let $\{B_n : n \in \mathbb{N}\}$ be a decreasing neighbourhood base of x in X. Then $f(B_n)$ is a sequential neighbourhood of y in Y for every $n \in \mathbb{N}$. By Lemma 5.2, if $\{y_n\}$ is a sequence converging to y in Y, then there exists a sequence $\{x_n\}$ converging to x in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$. So f is 1-sequence-covering.

Sufficiency. Every 1-sequence-covering image on first-countable spaces is snf-countable [26].

Remark 5.4. (1) Theorem 5.3 improves [16, Theorems 3.3 and 3.9].

(2) Let (M, d) be a metric space and (Y, τ) be a topological space. A mapping $f: (M, d) \to (Y, \tau)$ is called a π -mapping [37], if $y \in U \in \tau$, then $d(f^{-1}(y), M \setminus f^{-1}(U)) > 0$. Every sequentially quotient and π -image of metric spaces is snf-countable [10]. Theorem 5.3 implies that every sequence-covering s- π -mapping on metric spaces is 1-sequence-covering, which was established in [1].

(3) There exists a sequence-covering quotient *s*-mapping f on a metrizable space such that f is not 1-sequence-covering [17, Example 3.7]. There exists a sequence-covering quotient π -mapping f on a metrizable space such that f is not 1-sequence-covering [19, Example 2].

Theorem 5.5. Suppose that $f : X \to Y$ is a sequence-covering boundary-compact mapping, where X is first-countable. Then f is a 1-sequence-covering mapping.

PROOF. By Theorem 5.3, it suffices to show that Y is snf-countable. Let $y \in Y$. Without loss of generality, we assume that there exists a non-trivial sequence converging to y in Y. Thus $\partial f^{-1}(y) \neq \emptyset$. Then there exists a point $x_y \in \partial f^{-1}(y)$ such that if U is a neighbourhood of x_y in X, f(U) is a sequential neighbourhood of y in Y.

Otherwise, for every $x \in \partial f^{-1}(y)$, there exists an open neighbourhood U_x of x in X such that $f(U_x)$ is not a sequential neighbourhood of y in Y. Since $\{U_x : x \in \partial f^{-1}(y)\}$ covers $\partial f^{-1}(y)$, there exists a finite subfamily $\mathcal{U} = \{U_{x_j} : j \leq n\}$ of $\{U_x : x \in \partial f^{-1}(y)\}$ covers $\partial f^{-1}(y)$. For every $j \leq n$, since $f(U_{x_j})$ is not a

sequential neighbourhood of y in Y, there exists a sequence $\{z_{i,j}\}_{i\in\mathbb{N}}$ converging to y in Y such that $z_{i,j} \notin f(U_{x_j})$ for every $i \in \mathbb{N}$. Now, we construct a sequence $\{y_k\}$ in Y satisfying $y_k = z_{i,j}$, where $k = j + (i-1)n, 1 \leq j \leq n$ and $i \in \mathbb{N}$. Obviously, the sequence $\{y_k\}$ converges to y in Y. The mapping f being sequencecovering, there exists a sequence $\{u_k\}$ converging to some point $u \in \partial f^{-1}(y)$ in X such that $f(u_k) = y_k$ for every $k \in \mathbb{N}$. Pick $j_0 \leq n$ such that $u \in U_{x_{j_0}}$. Thus there exists a $k_0 \in \mathbb{N}$ such that $\{u_k : k > k_0\} \subset U_{x_{j_0}}$. Pick $i_0 \in \mathbb{N}$ such that $k = j_0 + (i_0 - 1)n > k_0$. Then $z_{i_0,j_0} = y_k = f(u_k) \in f(U_{x_{j_0}})$. This is a contradiction.

Let $\{B_n : n \in \mathbb{N}\}$ be a decreasing neighbourhood base of x in X. Then $\{f(B_n) : n \in \mathbb{N}\}$ is an *sn*-network of y in Y. Hence, Y is *snf*-countable. \Box

Lemma 5.6. Let $f : X \to Y$ be a sequence-covering mapping, $y \in Y$ and $K = \partial f^{-1}(y) \neq \emptyset$. If y has a countable sn-network in Y and K has a countable outer sn-network in X, then there exist a point $x \in f^{-1}(y)$ and a countable decreasing network \mathcal{P}_x of x in X such that $f(\mathcal{P}_x)$ is an sn-network of y in Y.

PROOF. Let $\mathcal{P} = \bigcup_{x \in K} \mathcal{P}_x$ be a countable outer *sn*-network of K in X, where \mathcal{P}_x is a decreasing *sn*-network of x in X for every $x \in K$. Suppose $\{F_i : i \in \mathbb{N}\}$ is a decreasing *sn*-network of y in Y. Assume the conclusion is not true. Then, for every $x \in \partial f^{-1}(y)$, there exists $P_x \in \mathcal{P}_x$ such that $F_i \not\subset f(P_x)$ for every $i \in \mathbb{N}$. Then $\mathcal{P}' = \{P_x : x \in K\}$ is a countable cover of K. Write $\mathcal{P}' = \{U_j : j \in \mathbb{N}\}$. For every $i, j \in \mathbb{N}$, there exists a point $z_{i,j} \in F_i \setminus f(U_j)$. For every $i, j \in \mathbb{N}$ and $i \geq j$, let $y_k = z_{i,j}$, where $k = j + \frac{i(i-1)}{2}$. Since $\{F_i : i \in \mathbb{N}\}$ is a decreasing network of y in Y, the sequence $\{y_k\}$ converges to y in Y. The mapping f being sequence-covering, there exists a sequence $\{u_k\}$ converging to some point $u \in \partial f^{-1}(y)$ in X such that $f(u_k) = y_k$ for every $k \in \mathbb{N}$. Pick $j_0 \in \mathbb{N}$ such that $P_u = U_{j_0}$. Thus U_{j_0} is a sequential neighbourhood of u in X and there exists a $k_0 \in \mathbb{N}$ such that $\{u_k : k > k_0\} \subset U_{j_0}$. Pick $i_0 \geq j_0$ such that $k = j_0 + \frac{i_0(i_0-1)}{2} > k_0$. Then $z_{i_0,j_0} = y_k = f(u_k) \in f(U_{j_0})$. This is a contradiction.

Theorem 5.7. Suppose that $f: X \to Y$ is a sequence-covering boundary-compact mapping, where every compact subset of X is metrizable and has a countable snnetwork in X. Then f is a 1-sequence-covering mapping.

PROOF. Let $y \in Y$. Without loss of generality, we assume that there exists a non-trivial sequence converging to y in Y. Thus $\partial f^{-1}(y) \neq \emptyset$. By Lemma 4.4, y has a countable *sn*-network in Y. By Lemma 4.3, every compact subset of X has a countable outer *sn*-network. Lemma 5.6 implies that there exist a point $x \in f^{-1}(y)$ and a countable decreasing network \mathcal{P}_x of x in X such that $f(\mathcal{P}_x)$ is

an *sn*-network of y in Y. By Lemma 5.2, if $\{y_n\}$ is a sequence converging to y in Y, then there exists a sequence $\{x_n\}$ converging to x in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$. So f is 1-sequence-covering.

Definition 5.8. [27] Let $f : X \to Y$ be a mapping.

(1) f is a 1-scc-mapping if for every compact subset K of Y, there exists a compact subset L of X such that f(L) = K, and for every $y \in K$, there exists a point $x \in L$ such that whenever $\{y_n\}$ converges to y in Y, there is a sequence $\{x_n\}$ converging to x in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$.

(2) f is an *scc-mapping* if for every compact subset K of Y, there exists a compact subset L of X such that f(L) = K, and whenever $\{y_n\}$ converges to some point of K in Y, there is a sequence $\{x_n\}$ converging to some point of L in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$.

Obviously, every 1-*scc*-mapping is 1-sequence-covering and compact-covering, and every *scc*-mapping is sequence-covering and compact-covering. Every compact-covering open mapping on first-countable spaces is a 1-*scc*-mapping [27].

Theorem 5.9. Suppose that $f : X \to Y$ is an scc-mapping, where X is firstcountable. Then f is a 1-sequence-covering mapping.

PROOF. Let K be a compact subset of Y. There exists a compact subset L of X such that f(L) = K, and whenever $\{t_n\}$ converges to some point of K in Y, there is a sequence $\{s_n\}$ converging to some point of L in X with $s_n \in f^{-1}(t_n)$ for every $n \in \mathbb{N}$. Let $y \in K$. Then there exists a point $x_y \in \partial f^{-1}(y) \cap L$ such that if U is a neighbourhood of x_y in X, f(U) is a sequential neighbourhood of y in Y.

Otherwise, for every $x \in \partial f^{-1}(y) \cap L$, there exists an open neighbourhood U_x of x in X such that $f(U_x)$ is not a sequential neighbourhood of y in Y. Since $\{U_x : x \in \partial f^{-1}(y) \cap L\}$ covers $\partial f^{-1}(y) \cap L$, there exists a finite subfamily $\mathcal{U} = \{U_{x_j} : j \leq n\}$ of $\{U_x : x \in \partial f^{-1}(y) \cap L\}$ covers $\partial f^{-1}(y) \cap L$. For every $j \leq n$, since $f(U_{x_j})$ is not a sequential neighbourhood of y in Y, there exists a sequence $z_{1,j}, z_{2,j}, \cdots$ converging to y in Y such that $z_{i,j} \notin f(U_{x_j})$ for every $i \in \mathbb{N}$. Now,we construct a sequence $\{y_k\}$ in Y satisfying $y_k = z_{i,j}$, where $k = j + (i-1)n, 1 \leq j \leq n$ and $i \in \mathbb{N}$. Obviously, $\{y_k\}$ converges to $y \in K$ in Y. The mapping f being sequence-covering, there exists a sequence $\{u_k\}$ converging to some point $u \in \partial f^{-1}(y) \cap L$ in X such that $f(u_k) = y_k$ for every $k \in \mathbb{N}$. Pick $j_0 \leq n$ such that $u \in U_{x_{j_0}}$. Thus there exists a $k_0 \in \mathbb{N}$ such that $\{u_k : k > k_0\} \subset U_{x_{j_0}}$. Pick $i_0 \in \mathbb{N}$ such that $k = j_0 + (i_0 - 1)n > k_0$. Then $z_{i_0,j_0} = y_k = f(u_k) \in f(U_{x_{j_0}})$. This is a contradiction. Let $\{U_{y,n} : n \in \mathbb{N}\}$ be a decreasing neighbourhood base of x_y in X. Then $\{f(U_{y,n}) : n \in \mathbb{N}\}$ is an *sn*-network of y in Y. By Lemma 5.2, if $\{y_n\}$ is a sequence converging to y in Y, then there exists a sequence $\{x_n\}$ converging to x_y in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$. So f is 1-sequence-covering. \Box

We still do not know whether every *scc*-mapping on compact spaces is a 1-sequence-covering mapping or not [27].

Question 5.10. Suppose that $f : X \to Y$ is a sequence-covering boundarycompact mapping. Is f a 1-sequence-covering mapping if X satisfies one of the following conditions?

- (1) Every compact subset of X has a countable sn-network in X.
- (2) Every compact subset of X has a countable outer sn-network in X.
- (3) X has a compact-countable sn-network.

Acknowledgements. We wish to thank the reviewers for the detailed list of suggestions to the paper, and all her/his efforts in order to improve the paper.

References

- T.V. An, L.Q. Tuyen, Further properties of 1-sequence-covering maps, Comment. Math. Univ. Carolinae 49(3)(2008)477-484.
- [2] A.V. Arhangel'skiĭ, An addition theorem for the weight of sets lying in bicompacts (in Russian), Dokl. Akad. Nauk SSSR 126(2)(1959)239-241.
- [3] T. Banakh, V. Bogachev, A. Kolesnikov, k*-metrizable spaces and their applications, J. Math. Sci. 155(4)(2008)475-522.
- [4] J.R. Boone, F. Siwiec, Sequentially quotient mappings, Czech. Math. J. 26(1976)174-182.
- [5] C.R. Borges, A.C. Wehrly, A study of D-spaces, Topology Proc. 16(1991)7-15.
- [6] D.K. Burke, Weak-bases and D-spaces, Comment. Math. Univ. Carolinae, 48(2)(2007)281-289.
- [7] S.W. Davis, More on Cauchy conditions, Topology Proc. 9(1984)31-36.
- [8] E.K. van Douwen, Simultaneous extension of continuous functions, Thesis Free University, Amsterdam, 1975.
- [9] S.P. Franklin, Spaces in which sequences suffice, Fund. Math. 57(1965)107-115.
- [10] Ying Ge, Shou Lin, g-metrizable spaces and the images of semi-metric spaces, Czech. Math. J. 57(4)(2007)1141-1149.
- [11] G. Gruenhage, Generalized metric spaces, in: K. Kunen, J.E. Vaughan (Eds.), Handbook of Set-theoretic Topology, North-Holland, Amsterdam, 1984, pp. 423-501.
- [12] G. Gruenhage, Generalized metrizable spaces, in: K.P. Hart, J. van Mill, P. Simon (Eds.), Recent Progress in General Topology III, Papers from the Prague Topological Symp., Prague, 2011, Atlantis Press, Pairs, 2014, pp. 459-492.
- [13] G. Gruenhage, E.A. Michael, Y. Tanaka, Spaces determined by point-countable covers, Pac. J. Math. 113(2)(1984)303-332.

- [14] Y. Ikeda, Chuan Liu, Y. Tanaka, Quotient compact images of metric spaces, and related matters, Topology Appl. 122(1-2)(2002)237-252.
- [15] Fucai Lin, Shou Lin, On sequence-covering boundary compact maps of metric spaces, Adv. Math. (PRC) 39(1)(2010)71-78.
- [16] Fucai Lin, Shou Lin, Sequence-covering maps on generalized metric spaces, Houston J. Math. 40(3)(2014)927-943.
- [17] Shou Lin, On sequence-covering s-mappings (in Chinese), Adv. Math. (PRC) 25(6)(1996)548-551.
- [18] Shou Lin, A note on the Arens' space and sequential fan, Topology Appl. 81(1997)185-196.
- [19] Shou Lin, A note on 1-sequence-covering mappings (in Chinese), Adv. Math. (PRC) 34(4)(2005)473-476.
- [20] Shou Lin, Generalized Metric Spaces and Mappings (in Chinese), the second edition, Science Press, Beijing, 2007.
- [21] Shou Lin, Boundary s-mappings, boundary-compact-mappings and k-semistratifiable spaces, (in Chinese), Chinese Ann. Math. 32A(2)(2011)229-236.
- [22] Shou Lin, Zhangyong Cai, Chuan Liu, The closed mappings on k-semistratifiable spaces, Houston J. Math. 35(1)(2009)139-147.
- [23] Shou Lin, Chuan Liu, Mumin Dai, Images on locally separable metric spaces, Acta Math. Sinica (New Series) 13(1)(1997)1-8.
- [24] Shou Lin, Y. Tanaka, Point-countable k-networks, closed maps, and related results, Topology Appl. 59(1)(1994)79-86.
- [25] Shou Lin, Pengfei Yan, Sequence-covering maps of metric spaces, Topology Appl. 109(3)(2001)301-314.
- [26] Shou Lin, Pengfei Yan, On sequence-covering compact mappings (in Chinese), Acta Math. Sinica 44(1)(2001)175-182.
- [27] Shou Lin, Jing Zhang, Weak bases and the compact-covering images of metric spaces (in Chinese), Acta Math. Scientia 33A(3)(2013)483-493.
- [28] Chuan Liu, On weak bases, Topology Appl. 150(2005)91-99.
- [29] Chuan Liu, Notes on closed mappings, Houston J. Math. 33(1)(2007)249-259.
- [30] E.A. Michael, ℵ₀-spaces, J. Math. Mech. 15(6)(1966)983-1002.
- [31] E.A. Michael, On representing spaces as images of metrizable and related spaces, General Topology Appl. 1(1971)329-343.
- [32] E.A. Michael, A quintuple quotient quest, General Topology Appl. 2(1972)91-138.
- [33] E.A. Michael, A problem, in: Topological Structures, II, Math. Centre Tracts, 1979, no. 115, pp. 165-166.
- [34] E.A. Michael, K. Nagami, Compact-covering images of metric spaces, Proc. Amer. Math. Soc. 37(1)(1973)260-266.
- [35] K. Morita, S. Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32(1956)10-14.
- [36] P. O'Meara, On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc. 29(1)(1971)183-189.
- [37] V.I. Ponomarev, Axioms of countability and continuous mappings (in Russian), Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 8(1960)127-134.
- [38] M. Sakai, Countable size nonmetrizable spaces which are stratifiable and κ-metrizable, Proc. Amer. Math. Soc., 122(1)(1994)265-273.

- [39] M. Sakai, Remarks on spaces with special type of k-networks, Tsukuba J. Math. 21(1997)443-448.
- [40] M. Sakai, Weak-open maps and sequence-covering maps, Sci. Math. Japonica 66(1)(2007)67-71.
- [41] M. Sakai, M. Mizokami and Lin's conjecture on $\sigma\text{-}CF^*$ pseudo-bases, Topology Appl. 157(2010)152-156.
- $\left[42\right]$ M. Sakai, On k-networks and weak bases for spaces, Topology Appl. 157(2010)2383-2388.
- [43] A. Shibakov, Closed mapping theorems on k-spaces with point-countable k-networks, Comment. Math. Univ. Carolinae 36(1)(1995)77-87.
- [44] F. Siwiec, Sequence-covering and countably bi-quotient mappings, General Topology Appl. 1(1971)143-154.
- [45] A.H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7(1956)690-700.
- [46] Y. Tanaka, Metrizability of certain quotient spaces, Fund. Math. 119(1983)157-168.
- [47] Y. Tanaka, Chuan Liu, Fiber properties of closed maps, and weak topology, Topology Proc. 24(1999)323-344.
- [48] Pengfei Yan, Shouli Jiang, On the compact-covering π -maps (in Chinese), J. Math. (PRC) 24(4)(2004)429-432.
- [49] Pengfei Yan, Shou Lin, Shouli Jiang, Metrizability is preserved by sequence-covering and closed maps, (in Chinese), Acta Math. Sinica 47(1)(2004)87-90.
- [50] Ziqiu Yun, On closed mappings, Houston J. Math. 31(1)(2005)193-197.

Received March 7, 2016 Revised version received May 24, 2016

Shou Lin: Institute of Mathematics, Ningde Normal University, Ningde, Fujian 352100, P.R. China; and Department of Mathematics, Minnan Normal University, Zhangzhou 363000, P.R. China

 $E\text{-}mail\ address:\ \texttt{shoulin60@163.com}$

ZHANGYONG CAI: DEPARTMENT OF MATHEMATICS, GUANGXI TEACHERS EDUCATION UNIVER-SITY, NANNING 530023, P.R. CHINA

E-mail address: zycaigxu2002@126.com