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Abstract. Yoshio Tanaka and Chuan Liu posed the following question in

1999: Let f : X → Y be a closed mapping. Under what conditions on X or

Y , does ∂f−1(y) have some nice properties for every y ∈ Y ?

In this paper, the following two related questions are discussed.

(1) When is a closed mapping to be a boundary-compact mapping or

boundary-Lindelöf mapping?

(2) When is a sequence-covering boundary-compact mapping or

boundary-Lindelöf mapping to be a 1-sequence-covering mapping?

The following results on generalized metric spaces are obtained, which

answers a few questions in literature.

(a) Suppose that f : X → Y is a closed mapping, where X is a regular

k-space with a point-countable k-network or a regular sequential space with

a point-countable w-system. If Y contains no closed copy of Sω , then f is a

boundary-compact mapping.

(b) Suppose that f : X → Y is a closed mapping, where X is a k∗-

metrizable k-space. If Y contains no closed copy of Sω1 , then f is a

boundary-s-mapping.

(c) Suppose that f : X → Y is a sequence-covering boundary-compact

mapping. If X is first-countable, then f is a 1-sequence-covering mapping.

(d) Suppose that f : X → Y is a sequence-covering boundary-Lindelöf

mapping, where X is first-countable. Then Y is snf -countable if and only

if f is a 1-sequence-covering mapping.
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1. Introduction

Mappings are an important tool of investigating topological spaces. Re-

cently, mutual relations among closed mappings, boundary-compact mappings

and sequence-covering mappings have been one of the topics focused by topolo-

gists [3, 16, 21, 22, 29, 40, 41, 42, 49, 50]. Research concerning this topic mainly

originated from the deepening to some mappings theorems on metrizable spaces.

The classic mapping theorem on metrizable spaces is as follows.

Theorem 1.1. [35, 45] Suppose that X is a metrizable space. If f : X → Y is a

closed mapping, then the following are equivalent.

(1) Y is a metrizable space.

(2) Y is a first-countable space.

(3) f is a boundary-compact mapping.

This shows that, under certain conditions, a closed mapping is boundary-

compact and so inductively perfect and compact-covering. Tanaka and Liu [47]

posed the following Question 1.2.

Question 1.2. [47] Let f : X → Y be a closed mapping. Under what conditions

on X or Y , does ∂f−1(y) have some nice properties for every y ∈ Y ?

This guides us to discuss following Question 1.3 in this paper.

Question 1.3. When is a closed mapping to be a boundary-compact mapping or

boundary-Lindelöf mapping?

Theorem 1.1 implies that open and closed mappings preserve metrizability,

where openness of mappings can not omitted, but can be weakened from different

stand point. Siwiec [44] introduced sequence-covering mappings and proved that

every open mapping on first-countable spaces is sequence-covering. This shows

that sequence-covering mappings on metrizable spaces are a generalization of open

mappings. Yan, Jiang and Lin [49] further proved that sequence-covering closed

mappings preserve metrizability, where the key is to show that every sequence-

covering compact mapping on metrizable spaces is 1-sequence-covering [25]. Every

open mapping on first-countable spaces is also 1-sequence-covering [17].

These lead to following Question 1.4.

Question 1.4. When is a sequence-covering boundary-compact mapping or

boundary-Lindelöf mapping to be a 1-sequence-covering mapping?

In this paper, we mainly discuss Questions 1.3 and 1.4 on generalized metric

spaces, in particular, affirmatively answer following Questions 1.5.
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Question 1.5. [16, Question 3.1] Is every sequence-covering boundary-compact

mapping on the spaces in which every compact subset has a countable neigh-

bourhood base 1-sequence-covering? More generally, is every sequence-covering

boundary-compact mapping on first-countable spaces 1-sequence-covering?

The paper is organized as follows.

In Sections 2 and 3, around Questions 1.2 and 1.3, we discuss the properties of

closed mappings on the spaces with a point-countable k-network or k∗-metrizable

spaces.

In Sections 4 and 5, around Questions 1.4 and 1.5, we mainly discuss the prop-

erties of sequentially quotient or sequence-covering boundary-compact mappings

on the spaces in which every compact subset has a countable sn-network, and

investigate the properties of sequence-covering boundary-compact mappings or

boundary-Lindelöf mappings on first-countable spaces.

In addition, a few questions are also posed.
Recall some concepts relevant to mappings or k-networks.

Definition 1.6. Let f : X → Y be a mapping.

(1) f is called a boundary-compact mapping (resp. boundary-Lindelöf mapping,

boundary-s-mapping), if ∂f−1(y) is compact (resp. Lindelöf, separable) for every y ∈ Y .

(2) f is a compact-covering mapping [30] if for every compact subset K of Y , there

exists a compact subset L of X such that f(L) = K.

(3) f is a sequence-covering mapping [44] if {yn} is a convergent sequence in Y , there

is a convergent sequence {xn} in X with xn ∈ f−1(yn) for every n ∈ N.
(4) f is a pseudo-sequence-covering mapping [13, 14] if for every convergent sequence L

including its limit point in Y , there exists a compact subset K of X such that f(K) = L.

(5) f is a subsequence-covering mapping [23] if {yn} is a convergent sequence including

its limit point in Y , there exists a compact subsetK ofX such that f(K) is a subsequence

of {yn}.
(6) f is a sequentially quotient mapping [4] if {yn} is a convergent sequence in Y , there

exists a convergent sequence {xk} in X such that the sequence {f(xk)} is a subsequence

of the sequence {yn}.
(7) f is a 1-sequence-covering mapping [17] if for every y ∈ Y , there exists a point

x ∈ f−1(y) such that whenever a sequence {yn} converges to y in Y , there is a sequence

{xn} converging to x in X with xn ∈ f−1(yn) for every n ∈ N.

The following implications about mappings are evident.

1-sequence-covering - sequence-covering - sequentially quotient

? ?
compact-covering - pseudo-sequence-covering - subsequence-covering
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Definition 1.7. Let P be a family of subsets of a topological space X and A ⊂ X.

The symbol cl1(A) denotes the set consisting of the limits of convergent sequences

of points of A in X.

(1) P is a network [2] for X if for every point x ∈ X and any neighbourhood

U of x, there exists a P ∈ P such that x ∈ P ⊂ U .

(2) P is a k-network [36] for X if whenever K is a compact subset of an open

set U , there exists a finite subfamily F ⊂ P such that K ⊂ ∪F ⊂ U .

(3) P is a wcs∗-network [24] for X if whenever {xn} is a sequence converging

to a point x ∈ U with U open in X, then {xni : i ∈ N} ⊂ P ⊂ U for some

subsequence {xni
} of {xn} and some P ∈ P.

(4) P is a cl1-osed k-network [3] (briefly, k1-network) for X if whenever K is a

compact subset of an open set U , there exists a finite subfamily F ⊂ P such that

K ⊂ ∪F ⊂ cl1(∪F) ⊂ U .

(5) P is a cl1-osed cs∗-network [3] (briefly, cs∗1-network) for X if whenever

{xn} is a sequence converging to a point x ∈ U with U open in X, then {xni
:

i ∈ N} ⊂ P ⊂ cl1(P ) ⊂ U for some subsequence {xni
} of {xn} and some P ∈ P.

Obviously, every k-network (resp. wcs∗-network) in regular spaces is a k1-

network (resp. cs∗1-network). The following implications are also evident.

k1-network
�
��*
cs∗1-network

HHHj
H
HHj k-network �

��*
wcs∗-network - network

For an infinite cardinal number κ, the fan space Sκ [46] is the quotient space

obtained by identifying all limit points of the topological sum of κ many conver-

gent sequences. We only use Sω and Sω1 in the paper.

In what follows, all topological spaces are assumed to be Hausdorff and all

mappings are continuous and surjective. For some terminology unstated here,

readers may refer to [11].

2. boundary-compact mappings

The following theorem complements Theorem 1.1.

Theorem 2.1. [46] Let f : X → Y be a closed mapping, where X is a metrizable

space. If Y contains no closed copy of Sω, then f is a boundary-compact mapping.

In this section, around Question 1.3, we shall discuss which generalized metric

spaces Theorem 2.1 can be generalized to.
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A topological space X is said to be sequentially separable [7], if there exists a

countable subset D ⊂ X such that cl1(D) = X, where D is called a sequentially

dense subset of X.

Lemma 2.2. Suppose that X is a sequentially separable space. If X has a point-

countable cs∗1-network, then it has a countable network.

Proof. Let D be a sequentially dense subset of X and P a point-countable cs∗1-

network. Then F = {cl1(P ) : P ∈ P, P ∩D 6= ∅} is countable. Let x ∈ U with U

open in X. There exists a sequence {xn} of points of D such that {xn} converges

to x in X, and {xni
: i ∈ N} ⊂ P ⊂ cl1(P ) ⊂ U for some subsequence {xni

} of

{xn} and some P ∈ P. Thus cl1(P ) ∈ F and x ∈ cl1(P ) ⊂ U . Hence F is a

countable network for X. �

A topological space X is called a sequential space [9] if a set A ⊂ X is closed if

and only if together with any sequence it contains its limit. A topological space

X is of countable tightness [32] if whenever x ∈ A in X, then x ∈ C for some

countable C ⊂ A. Every sequential space is of countable tightness [32].

Lemma 2.3. Let f : X → Y be a closed mapping, where X is a sequential space

and Y contains no closed copy of Sω. If every sequentially separable subspace of

X is normal, then ∂f−1(y) is a countably compact subset of X for every y ∈ Y .

Proof. For every y ∈ Y , put A = f−1(y) ∩ cl1(X \ f−1(y)).

(3.1) A = ∂f−1(y).

Obviously, A ⊂ ∂f−1(y). It is easy to see the set A∪(X\f−1(y)) is sequentially

closed. Since X is sequential, the set U = f−1(y)∩ (X \A) is open and ∂f−1(y)\
A ⊂ U , thus A = ∂f−1(y).

Now, we shall show that ∂f−1(y) is a countably compact subset of X for every

y ∈ Y .

Otherwise, ∂f−1(y) contains an infinite closed discrete subset {xn : n ∈ N}.
For every n ∈ N, by (3.1), xn ∈ A and there exists a countable subset {xn,m : m ∈
N} ⊂ A such that xn ∈ {xn,m : m ∈ N}, since X is of countable tightness. For

every n,m ∈ N, there exists a sequence Ln,m of points of X \ f−1(y) converging

to xn,m in X. Let

D = cl1({xn : n ∈ N} ∪
⋃
{Ln,m : n,m ∈ N}).

Obviously, {xn : n ∈ N} ⊂ D and the subspace D is sequentially separable. By

the hypothesis, D is a normal space. There exists a discrete family {Un : n ∈ N}
of open subsets in D such that xn ∈ Un for every n ∈ N. For every n ∈ N, choose
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mn ∈ N such that xn,mn
∈ Un. Since Ln,mn

converges to xn,mn
in D, without

loss of generality, we may assume that Ln,mn ⊂ Un for every n ∈ N. For every

n ∈ N, write Pn = Ln,mn
, thus y 6∈ f(Pn) and the sequence f(Pn) converges to y

in Y .

(3.2)
⋃
n∈NQn is a closed discrete subset of X, where Qn is a finite subset of

Pn for every n ∈ N.

Otherwise, since X is a sequential space, there exists a sequence {bk} converg-

ing to some point b 6∈
⋃
n∈NQn in X such that bk ∈ Qnk

⊂ Unk
for every k ∈ N

with n1 < n2 < · · · . Thus b ∈ D and {bk : k ∈ N} is not closed in D, which

contradicts the fact that {Unk
: k ∈ N} is discrete in D. Hence,

⋃
n∈NQn is

closed, further, is closed discrete in X.

For every n ∈ N, there exist a finite subset Fn of f(Pn) and nk ∈ N such that

f(Pn) ∩
⋃

m≥nk

f(Pm) ⊂ Fn.

Otherwise, there exist a non-trivial sequence {yi} of points of f(Pn) and a se-

quence {f(Pki)} such that yi ∈ f(Pki) for every i ∈ N. According to (3.2) and

the closedness of f , the set {yi : i ∈ N} is a closed discrete subset of Y . This is

a contradiction. Now, we can assume that nk < nk+1 for each k ∈ N. For every

k ∈ N, let Kk = f(Pnk
) \ Fnk

. Then the sequence Kk converges to y in Y for

every k ∈ N and {Kk : k ∈ N} is a pairwise disjoint family.

Put S = {y}∪
⋃
k∈NKk. Since X is a sequential space and f is closed, Y is also

a sequential space. Using again (3.2) and the closedness of f , we conclude that

S is closed in Y and S is homeomorphic to Sω. This contradicts the hypothesis

that Y contains no closed copy of Sω. In a word, ∂f−1(y) is a countably compact

subset of X for every y ∈ Y . �

Lemma 2.4. [24] Suppose that X is a countably compact sequential space with a

point-countable wcs∗-network. Then X is a compact metrizable space.

Lemma 2.5. [13] Every k-space with a point-countable k-network is a sequential

space.

Theorem 2.6. Suppose that f : X → Y is a closed mapping, where X is a

regular k-space with a point-countable k-network. If Y contains no closed copy of

Sω, then f is a boundary-compact mapping.

Proof. Since X is a regular space with a point-countable k-network, X has a

point-countable cs∗1-network. By Lemma 2.2, every sequentially separable sub-

space of X has a countable network, and so is normal. Lemmas 2.3, 2.4 and 2.5

imply together that f is a boundary-compact mapping. �
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Let X be a topological space and x ∈ X. A subset G of X is called a sequential

neighborhood of x in X if any sequence {xn} converging to x is eventually in G,

i.e., {xn : n ≥ k0} ∪ {x} ⊂ G for some k0 ∈ N. Let W be a family of subsets

of a topological space X. W is called a w-system [6] for X, if for every x ∈ X
and every open neighbourhood U of x in X, there exists a subfamily V ⊂ W such

that x ∈ ∩V, ∪V ⊂ U and ∪V is a sequential neighbourhood of x in X.

Burke [6, Proposition 4.2, Theorem 4.4] obtained the following results.

(1) Quotient s-images of metric spaces are a sequential space with a point-

countable w-system.

(2) Sequential spaces with a point-countable w-system are a D-space1.

Next, we shall discuss Questions 1.2 and 1.3 on sequential spaces with a point-

countable w-system. In order to make better use of w-systems, we introduce a

new notion. Let P be a family of subsets of a topological space X. P is called

a cs′-network for X, if whenever {xn} is a sequence converging to a point x ∈ U
with U open in X, then {x, xm} ⊂ P ⊂ U for some m ∈ N and some P ∈ P.

Lemma 2.7. Let P be a family of subsets of a topological space X. Then P is a

cs′-network for X if and only if P is a w-system for X.

Proof. Necessity. Let P be a cs′-network forX and U be an open neighbourhood

of a point x in X. Put V = {P ∈ P : x ∈ P ⊂ U}. Then x ∈ ∩V and ∪V ⊂ U .

Assume that ∪V is not a sequential neighbourhood of x in X. Then there exists

a sequence {xn} converging to x such that xn 6∈ ∪V for every n ∈ N. Since P is

a cs′-network for X, then {x, xm} ⊂ P ⊂ U for some m ∈ N and some P ∈ P.

Thus xm ∈ P ⊂ ∪V. This is a contradiction. Hence P is a w-system for X.

Sufficiency. Let P be a w-system for X and {xn} be a sequence converging

to a point x ∈ U with U open in X. There exists a subfamily V ⊂ P such that

x ∈ ∩V, ∪V ⊂ U and ∪V is a sequential neighbourhood of x in X. We may

choose m ∈ N and P ∈ V such that xm ∈ P . Hence {x, xm} ⊂ P ⊂ U and P is a

cs′-network for X. �

Theorem 2.8. Suppose that f : X → Y is a closed mapping, where X is a

regular sequential space with a point-countable w-system. If Y contains no closed

copy of Sω, then f is a boundary-compact mapping.

1A neighbourhood assignment of a topological space (X, τ) is a function φ : X → τ satisfying

x ∈ φ(x) for every x ∈ X. A topological space X is called a D-space [8] if for every neighbour-

hood assignment φ of X, there exists a closed discrete subset D of X such that {φ(x) : x ∈ D}
covers X.
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Proof. Since every sequential space with a point-countable w-system is a D-

space [6, Theorem 4.4] and every countably compact D-space is compact, by

Lemma 2.3, it suffices to show that every sequentially separable subspace of X

has a countable network. Let A be a sequentially separable subspace of X and

D be a sequentially dense subset of A. By Lemma 2.7, X has a point-countable

cs′-network P. Let F = {P ∩A : P ∈ P, P ∩D 6= ∅}. Obviously, F is countable.

Let x ∈ U ∩A with U open in X. Then there exists a sequence {dn} of points of

D converging to x in A. So {x, dm} ⊂ P ⊂ U for some m ∈ N and some P ∈ P.

Then P ∩A ∈ F , x ∈ P ∩A ⊂ U ∩A and F is a countable network for A. �

Corollary 2.9. Let f : X → Y be a closed mapping, where X is regular. If one

of following conditions is satisfied, then f is a compact-covering mappings:

(1) X is a sequential space with a point-countable w-system.

(2) X is a k-space with a point-countable k-network [22].

Proof. Let K be a compact subset of Y . Put L = f−1(K) and g = f |L : L →
K. Since K contains no closed copy of Sω, by Theorems 2.8 and 2.6, g is a

boundary-compact mapping. Therefore, there is a closed subspace Z of L such

that g|Z : Z → K is a perfect mapping. Then (g|Z)−1(K) is a compact subset of

Z and f((g|Z)−1(K)) = K. So f is a compact-covering mapping. �

Remark 2.10. (1) [43] There exists a closed mapping f : X → Y such that f is not

compact-covering, where X has a countable base, and Y = {0} ∪ {1/n : n ∈ N}
with the usual topology.

(2) [39] There exists a closed mapping f : X → Y such that f is not compact-

covering, where X is a regular space with a point-countable k-network and a

point-countable w-system, and every compact subset of X is finite.

(3) There exists a paracompact sequential space with a point-countable k-

network, but without a point-countable w-system.

In fact, the fan space Sω1
is such a space. It is easy to see that Sω1

, as a

closed image of a metric space, is a paracompact sequential space with a point-

countable k-network. We shall show that Sω1
does not have a point-countable

w-system or point-countable cs′-network. Indeed, write Sω1 = {s} ∪
⋃
α<ω1

Xα,

where Xα converges to s for every α < ω1. Assume that Sω1
has a point-countable

cs′-network P. Write

{P ∈ P : s ∈ P, |{α < ω1 : Xα ∩ P 6= ∅} ≥ ω|} = {Pn : n ∈ N}.

By induction, we pick a subset {xn : n ∈ N} of Sω1 such that xn ∈ Pn ∩ Xαn ,

where Xαi
∩Xαj

6= ∅ for any two distinct i, j ∈ N. Then the set {xn : n ∈ N} is
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closed in Sω1
. Let

V = Sω1 \ {xn : n ∈ N},
F = {P ∈ P : P ⊂ V },
H = ∪{F ∈ F : s ∈ F}.

If s ∈ P ∈ F , then P 6∈ {Pn : n ∈ N} and so P intersects only finitely many

Xα’s. Thus H intersects only countably many Xα’s. We choose β < ω1 such that

Xβ ∩H = ∅. Let V ∩Xβ = {vn : n ∈ N}. Then the sequence {vn} converges to

s ∈ V and so {s, vm} ⊂ P for some m ∈ N and some P ∈ F . Hence vm ∈ Xβ ∩H.

This is a contradiction.

(4) There exists a paracompact sequential space with a point-countable w-

system, but without a point-countable k-network.

Indeed, there exists a non-first-countable, strongly Fréchet, countable and reg-

ular space S [38, Example 2.3]. Obviously, S is a paracompact sequential space.

Since a regular strongly Fréchet space with a point-countable k-network is first-

countable [13, Corollary 3.6], the space S does not have a point-countable k-

network. Write S = {sn : n ∈ N}. Let P = {{sn, sm} : n,m ∈ N}. Then P is a

countable cs′-network for S. Namely, P is a countable w-system for S by Lemma

2.7.

3. boundary-Lindelöf mappings

Tanaka [46] established the following mapping theorem on metrizable spaces.

Theorem 3.1. [46] Let f : X → Y be a closed mapping, where X is a metrizable

space. If Y contains no closed copy of Sω1
, then f is a boundary-Lindelöf mapping.

Much research shows that Theorem 3.1 can be generalized to some generalized

metric spaces [13, 21, 28, 29]. In this section, we mainly discuss the mapping

theorems on k∗-metrizable spaces.

Definition 3.2. [3] A topological space is called a k∗-metrizable space if there

exist a metric space M and a mapping f : M → X satisfying the following (∗).
(∗) There exists a subspace Z ⊂ M such that f(Z) = X, and if K is precom-

pact2 in X, then Z ∩ f−1(K) is precompact in M .

The new class of k∗-metrizable spaces, which was also collected in [12] by

Gruenhage, has involved various applications in topological algebra, functional

analysis and measure theory.

2A subset A of a topological space X is precompact in X, if A is a compact subset of X.
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A family P of subsets of a topological space X is said to be compact-finite (resp.

compact-countable), if (P)K = {P ∈ P : P ∩K 6= ∅} is finite (resp. countable)

for every compact subset K of X.

Lemma 3.3. [3] A topological space X is k∗-metrizable if and only if X has a

σ-compact-finite k1-network.

A topological X is ω1-compact if every uncountable subset of X has an accu-

mulation point.

Lemma 3.4. Let P be a compact-finite family of a k-space X. If A is an ω1-

compact subset of X, then (P)A is countable.

Proof. Suppose (P)A is not countable. Since P is point-finite, there exist a

subfamily F = {Pα : α < ω1} ⊂ P and a subset B = {xα : α < ω1} ⊂ A

satisfying

(1) xα ∈ Pα for every α < ω1; and

(2) xα 6= xβ and Pα 6= Pβ for any two distinct α, β < ω1.

The space A being ω1-compact, let x be an accumulation point of B in A,

whence the set B\{x} is not closed in X. Since X is a k-space, there is a compact

subset K of X such that (B \ {x}) ∩K is not closed in K. Then (B \ {x}) ∩K
is infinite, which contradicts the hypothesis that P is compact-finite for X. �

Theorem 3.5. Let f : X → Y be a closed mapping, where X is a k∗-metrizable

k-space. If Y contains no closed copy of Sω1
, then f is a boundary-s-mapping.

Proof. By Lemma 3.3, X has a σ-compact-finite k1-network P. By Lemma 2.5,

X is a sequential space. For every y ∈ Y , put A = f−1(y) ∩ cl1(X \ f−1(y)).

We shall prove that A is an ω1-compact subset of X.

Otherwise, there exists an uncountable closed discrete subset D = {xα : α <

ω1} in A. For every α < ω1, choose an open neighbourhood Vα of xα in X such

that Vα ∩D \ {xα} = ∅. Since xα ∈ A ∩ Vα, there exists a sequence Lα of points

of (X \ f−1(y)) ∩ Vα converging to xα in X. Since P is a k1-network for X,

without loss of generality, we choose Pα ∈ P such that Lα ⊂ Pα ⊂ cl1(Pα) ⊂ Vα,

which implies that xα ∈ cl1(Pα) ⊂ X \ D \ {xα}. Thus Pα 6= Pβ for any two

distinct α, β < ω1. Since P is σ-compact-finite, we may assume that the family

F = {Pα : α < ω1} is compact-finite. For every α < ω1, the compact set

Lα intersects only finitely many elements of F , and it can be considered that

Lα ∩ Lβ = ∅ for any two distinct α, β < ω1.

(5.1)
⋃
α<ω1

Qα is a closed discrete subset of X, where Qα is a finite subset of

Lα for every α < ω1.
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In fact, for every compact subset K of X, since F is compact-finite, we conclude

that K ∩
⋃
α<ω1

Qα is finite and so is closed in X. The space X being a k-space,⋃
α<ω1

Qα is a closed discrete subset of X.

For every α < ω1, we have that y 6∈ f(Lα) and the sequence f(Lα) converges

to y in Y . According to (5.1), in a way similar to Lemma 2.3, without loss of

generality, we can prove that for every α < ω1, there exists a finite subset Fα of

f(Lα) such that Y contains a closed copy {y} ∪
⋃
α<ω1

(f(Lα) \ Fα) of Sω1
. This

is a contradiction. Hence, A is an ω1-compact subset of X.

Now, by Lemma 3.4, the spaceA has a countable k-network, and so is separable.

From the proof of (3.1) in Lemma 2.3, we conclude that A = ∂f−1(y) is separable.

�

Banakh, Bogachev and Kolesnikov [3] proved that, under CH, every separable

k∗-metrizable regular space has a countable k-network.

Corollary 3.6. Under CH, let f : X → Y be a closed mapping, where X is a

regular k∗-metrizable k-space. If Y contains no closed copy of Sω1 , then f is a

boundary-Lindelöf-mapping.

Question 3.7. Let f : X → Y be a closed mapping, where X is a k-space with a

compact-countable k-network. Is f a boundary-s-mapping if Y contains no closed

copy of Sω1
?

In Question 3.7, if X is replaced by a Moore space or a regular space with a

σ-locally finite k-network, then the answer is negative [20, Example 3.4.19].

4. pseudo-sequence-covering mappings

Michael [33] proved that there exists a pseudo-sequence-covering quotient and

compact mapping f : X → Y such that f is not compact-covering, where X is

a separable metrizable space and Y is a compact metrizable space. This shows

that there is a vast difference between pseudo-sequence-covering mappings and

compact-covering mappings. However, every sequentially quotient and boundary-

compact mapping on metrizable spaces is pseudo-sequence-covering [15]. In the

other hand, every subsequence-covering mapping on a space in which every com-

pact subset is metrizable is sequentially quotient. In this section, we shall further

prove that every sequentially quotient and boundary-compact mapping on some

generalized metric spaces is pseudo-sequence-covering.

If a topological space X is the open compact image of a metric space, then every

sequentially quotient and boundary-compact mapping on X is pseudo-sequence-

covering [16, Theorem 3.11]. Using outer bases, Michael and Nagami [34] proved



1070 SHOU LIN AND ZHANGYONG CAI

that a topological space X is the open compact image of a metric space if and

only if every compact subset K of X is metrizable has a countable neighbourhood

base in X. Let us recall the definitions of sn-networks and outer sn-networks.

Let X be a topological space and A ⊂ X. A subset G of X is called a sequential

neighborhood of A in X if any sequence converging to some point of A is eventually

in G.

Definition 4.1. Let X be a topological space and x ∈ X.

(1) A family Px of subsets of X is called a network of x in X, if x ∈ ∩Px and

for x ∈ U with U open in X, P ⊂ U for some P ∈ Px.

(2) A family Px of subsets of X is called a sequential neighbourhood network

(briefly, sn-network) of x in X [17], if the following conditions (a)–(c) hold.

(a) Px is a network of x in X;

(b) every element of Px is a sequential neighborhood of x in X; and

(c) if U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.

Michael [31] made use of outer networks to investigate images of metric spaces.

Outer bases and outer sn-networks are relevant to outer networks.

Definition 4.2. Let A be a non-empty subset of a topological space X.

(1)
⋃
x∈A Px is called an outer sn-network [27] (resp. an outer base [34]) of

A in X, where Px is an sn-network (resp. a neighbourhood base) of x in X for

every x ∈ A.

(2) A family P of subsets of X is called an sn-network [27] (resp. a neighbour-

hood base [34]) of A in X, if every element of P is a sequential neighbourhood

(resp. a neighbourhood) of every point of A in X and for every open subset V of

X containing A, there exists a P ∈ P such that P ⊂ V .

We have the following lemma about the relation between outer sn-networks

and sn-networks.

Lemma 4.3. [27] Let K be a compact subset of a topological space X. Then K is

metrizable and has a countable sn-network in X if and only if K has a countable

outer sn-network H in X satisfying that every element of H is of the form U ∩V ,

where U is open in X and V is a sequential neighbourhood of K in X.

Lemma 4.4. Let f : X → Y be a sequentially quotient mapping. If y ∈ Y

and ∂f−1(y) has a countable sn-network in X, then the point y has a countable

sn-network in Y .
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Proof. Let {Vn : n ∈ N} be a countable sn-network of ∂f−1(y) in X, where

Vn+1 ⊂ Vn for every n ∈ N. We shall show that {f(Vn) : n ∈ N} is an sn-network

of y in Y .

(4.1) {f(Vn) : n ∈ N} is a network of y in Y .

Let U be an open neighbourhood of y in Y . Then f−1(U) ⊃ ∂f−1(y) and so

there exists an n ∈ N such that Vn ⊂ f−1(U). Thus y ∈ f(Vn) ⊂ U .

(4.2) For every n ∈ N, f(Vn) is a sequential neighbourhood of y in Y .

Assume that f(Vn) is not a sequential neighbourhood of y in Y for some n ∈ N.

Then there exists a sequence {yi} converging to y in Y such that yi 6∈ f(Vn) for

every i ∈ N. Since f is a sequentially quotient mapping, there exists a sequence

{xk} converging to some point x ∈ X in X such that xk ∈ f−1(yik) for every

k ∈ N. Then x ∈ ∂f−1(y) ⊂ Vn. Because Vn is a sequential neighbourhood

of x in X, {xk} is eventually in Vn and {yik} is eventually in f(Vn). This is a

contradiction. �

Theorem 4.5. Suppose that f : X → Y is a sequentially quotient and boundary-

compact mapping. If every compact subset of X is has a countable sn-network in

X, then f is a pseudo-sequence-covering mapping.

Proof. Suppose that {yn} converges to y0 in Y . Let

S1 = {y0} ∪ {yn : n ∈ N}, X1 = f−1(S1) and g = f |X1
: X1 → S1.

Then g is also a sequentially quotient and boundary-compact mapping. Let {Vn :

n ∈ N} be a countable sn-network of the compact set ∂g−1(y0) in X1, where

Vn+1 ⊂ Vn for every n ∈ N. By Lemma 4.4, {g(Vn) : n ∈ N} is an sn-network

of y0 in S1. For every n ∈ N, there exists an in ∈ N such that g−1(yi) ∩ Vn 6= ∅
when i ≥ in. Without loss of generality, we assume that 1 < in < in+1 for every

n ∈ N. For every j ∈ N, pick

xj ∈
{
f−1(yj), j < i1;

f−1(yj) ∩ Vn, in ≤ j < in+1.

Let K = ∂g−1(y0)∪{xj : j ∈ N}. Since {Vn : n ∈ N} is an sn-network of ∂g−1(y0)

in X1, the sequence {xj} is eventually in every neighbourhood of ∂g−1(y0) in X1.

Since ∂g−1(y0) is a compact subset of X1, K is also compact of X1 by [30, Lemma

8.1]. Obviously, f(K) = S1. So f is a pseudo-sequence-covering mapping. �

Corollary 4.6. [16, Corollary 3.12] Suppose that f : X → Y is a sequentially

quotient and boundary-compact mapping. If X satisfies one of the following con-

ditions, then f is a pseudo-sequence-covering mapping.

(1) X has a point-countable base.
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(2) X is a developable space.

Proof. According to Theorem 4.5, it suffices to show that every compact sub-

set of a space X with a point-countable base or a development has a countable

neighbourhood base in X.

Since X is a space with a point-countable base or a developable space, it

follows from [34, Theorem 1.3] or [48, Theorem 1] that X is a compact-covering

open image of a metric space. Thus, by [34, Theorem 1.2], every compact subset

of X has a countable neighborhood base in X. �

Question 4.7. Is every sequentially quotient and boundary-compact mapping on

first-countable spaces pseudo-sequence-covering?

5. 1-sequence-covering mappings

In this section, we discuss Question 1.4 and give an affirmative answer to

Question 1.5.

Lemma 5.1. Let f : X → Y be a sequence-covering mapping and y ∈ Y . If

{Fi : i ∈ N} is a decreasing network of y in Y and ∂f−1(y) is a non-empty

Lindelöf subset of X. Then there exists a point xy ∈ ∂f−1(y) such that if U is a

neighbourhood of xy in X, Fi ⊂ f(U) for some i ∈ N.

Proof. Suppose the conclusion is not true. Then, for every x ∈ ∂f−1(y), there

exists an open neighbourhood Ux of x in X such that Fi 6⊂ f(Ux) for every i ∈ N.

Since {Ux : x ∈ ∂f−1(y)} covers ∂f−1(y), there exists a countable subfamily

U = {Uxj
: j ∈ N} of {Ux : x ∈ ∂f−1(y)} covers ∂f−1(y). For every i, j ∈ N, there

exists a point zi,j ∈ Fi \ f(Uxj
). For every i, j ∈ N and i ≥ j, let yk = zi,j , where

k = j + i(i−1)
2 . Since {Fi : i ∈ N} is a decreasing network of y in Y , the sequence

{yk} converges to y in Y . The mapping f being sequence-covering, there exists a

sequence {uk} converging to some point u ∈ ∂f−1(y) in X such that f(uk) = yk
for every k ∈ N. Pick j0 ∈ N such that u ∈ Uxj0

. Thus there exists a k0 ∈ N such

that {uk : k > k0} ⊂ Uxj0
. Pick i0 ≥ j0 such that k = j0 + i0(i0−1)

2 > k0. Then

zi0,j0 = yk = f(uk) ∈ f(Uxj0
). This is a contradiction. �

Lemma 5.2. [17] Let f : X → Y be a mapping, {Bn : n ∈ N} be a decreasing

network of some point x in X and {yi} be a sequence converging to f(x) in Y .

If {yi} is eventually in f(Bn) for every n ∈ N, then there is a sequence {xn}
converging to x in X such that xn ∈ f−1(yn) for every n ∈ N.

A topological space X is said to be snf -countable [18], if every point of X has

a countable sn-network. Obviously, every first-countable space is snf -countable.
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Theorem 5.3. Suppose that f : X → Y is a sequence-covering boundary-Lindelöf

mapping, where X is first-countable. Then Y is snf -countable if and only if f is

a 1-sequence-covering mapping.

Proof. Necessity. Let y ∈ Y and {Fi : i ∈ N} be a decreasing sn-network of y in

Y . Without loss of generality, we assume that there exists a non-trivial sequence

converging to y in Y . Thus f−1(y) is not open in X and so ∂f−1(y) 6= ∅. By

Lemma 5.1, there exists a point x ∈ ∂f−1(y) such that if U is a neighbourhood of

x in X, then Fi ⊂ f(U) for some i ∈ N and so f(U) is a sequential neighbourhood

of y in Y . Let {Bn : n ∈ N} be a decreasing neighbourhood base of x in X. Then

f(Bn) is a sequential neighbourhood of y in Y for every n ∈ N. By Lemma 5.2,

if {yn} is a sequence converging to y in Y , then there exists a sequence {xn}
converging to x in X with xn ∈ f−1(yn) for every n ∈ N. So f is 1-sequence-

covering.

Sufficiency. Every 1-sequence-covering image on first-countable spaces is snf -

countable [26]. �

Remark 5.4. (1) Theorem 5.3 improves [16, Theorems 3.3 and 3.9].

(2) Let (M,d) be a metric space and (Y, τ) be a topological space. A mapping

f : (M,d) → (Y, τ) is called a π-mapping [37], if y ∈ U ∈ τ , then d(f−1(y),M \
f−1(U)) > 0. Every sequentially quotient and π-image of metric spaces is snf -

countable [10]. Theorem 5.3 implies that every sequence-covering s-π-mapping

on metric spaces is 1-sequence-covering, which was established in [1].

(3) There exists a sequence-covering quotient s-mapping f on a metrizable

space such that f is not 1-sequence-covering [17, Example 3.7]. There exists a

sequence-covering quotient π-mapping f on a metrizable space such that f is not

1-sequence-covering [19, Example 2].

Theorem 5.5. Suppose that f : X → Y is a sequence-covering boundary-compact

mapping, where X is first-countable. Then f is a 1-sequence-covering mapping.

Proof. By Theorem 5.3, it suffices to show that Y is snf -countable. Let y ∈ Y .

Without loss of generality, we assume that there exists a non-trivial sequence

converging to y in Y . Thus ∂f−1(y) 6= ∅. Then there exists a point xy ∈ ∂f−1(y)

such that if U is a neighbourhood of xy in X, f(U) is a sequential neighbourhood

of y in Y .

Otherwise, for every x ∈ ∂f−1(y), there exists an open neighbourhood Ux of

x in X such that f(Ux) is not a sequential neighbourhood of y in Y . Since {Ux :

x ∈ ∂f−1(y)} covers ∂f−1(y), there exists a finite subfamily U = {Uxj
: j ≤ n}

of {Ux : x ∈ ∂f−1(y)} covers ∂f−1(y). For every j ≤ n, since f(Uxj ) is not a
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sequential neighbourhood of y in Y , there exists a sequence {zi,j}i∈N converging

to y in Y such that zi,j 6∈ f(Uxj ) for every i ∈ N. Now, we construct a sequence

{yk} in Y satisfying yk = zi,j , where k = j + (i − 1)n, 1 ≤ j ≤ n and i ∈ N.

Obviously, the sequence {yk} converges to y in Y . The mapping f being sequence-

covering, there exists a sequence {uk} converging to some point u ∈ ∂f−1(y) in

X such that f(uk) = yk for every k ∈ N. Pick j0 ≤ n such that u ∈ Uxj0
.

Thus there exists a k0 ∈ N such that {uk : k > k0} ⊂ Uxj0
. Pick i0 ∈ N such

that k = j0 + (i0 − 1)n > k0. Then zi0,j0 = yk = f(uk) ∈ f(Uxj0
). This is a

contradiction.

Let {Bn : n ∈ N} be a decreasing neighbourhood base of x in X. Then

{f(Bn) : n ∈ N} is an sn-network of y in Y . Hence, Y is snf -countable. �

Lemma 5.6. Let f : X → Y be a sequence-covering mapping, y ∈ Y and K =

∂f−1(y) 6= ∅. If y has a countable sn-network in Y and K has a countable outer

sn-network in X, then there exist a point x ∈ f−1(y) and a countable decreasing

network Px of x in X such that f(Px) is an sn-network of y in Y .

Proof. Let P =
⋃
x∈K Px be a countable outer sn-network of K in X, where

Px is a decreasing sn-network of x in X for every x ∈ K. Suppose {Fi : i ∈ N} is

a decreasing sn-network of y in Y . Assume the conclusion is not true. Then, for

every x ∈ ∂f−1(y), there exists Px ∈ Px such that Fi 6⊂ f(Px) for every i ∈ N.

Then P ′ = {Px : x ∈ K} is a countable cover of K. Write P ′ = {Uj : j ∈ N}. For

every i, j ∈ N, there exists a point zi,j ∈ Fi \ f(Uj). For every i, j ∈ N and i ≥ j,
let yk = zi,j , where k = j + i(i−1)

2 . Since {Fi : i ∈ N} is a decreasing network of

y in Y , the sequence {yk} converges to y in Y . The mapping f being sequence-

covering, there exists a sequence {uk} converging to some point u ∈ ∂f−1(y) in

X such that f(uk) = yk for every k ∈ N. Pick j0 ∈ N such that Pu = Uj0 . Thus

Uj0 is a sequential neighbourhood of u in X and there exists a k0 ∈ N such that

{uk : k > k0} ⊂ Uj0 . Pick i0 ≥ j0 such that k = j0 + i0(i0−1)
2 > k0. Then

zi0,j0 = yk = f(uk) ∈ f(Uj0). This is a contradiction. �

Theorem 5.7. Suppose that f : X → Y is a sequence-covering boundary-compact

mapping, where every compact subset of X is metrizable and has a countable sn-

network in X. Then f is a 1-sequence-covering mapping.

Proof. Let y ∈ Y . Without loss of generality, we assume that there exists a

non-trivial sequence converging to y in Y . Thus ∂f−1(y) 6= ∅. By Lemma 4.4,

y has a countable sn-network in Y . By Lemma 4.3, every compact subset of X

has a countable outer sn-network. Lemma 5.6 implies that there exist a point

x ∈ f−1(y) and a countable decreasing network Px of x in X such that f(Px) is
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an sn-network of y in Y . By Lemma 5.2, if {yn} is a sequence converging to y in

Y , then there exists a sequence {xn} converging to x in X with xn ∈ f−1(yn) for

every n ∈ N. So f is 1-sequence-covering. �

Definition 5.8. [27] Let f : X → Y be a mapping.

(1) f is a 1-scc-mapping if for every compact subset K of Y , there exists a

compact subset L of X such that f(L) = K, and for every y ∈ K, there exists

a point x ∈ L such that whenever {yn} converges to y in Y , there is a sequence

{xn} converging to x in X with xn ∈ f−1(yn) for every n ∈ N.

(2) f is an scc-mapping if for every compact subset K of Y , there exists a

compact subset L of X such that f(L) = K, and whenever {yn} converges to

some point of K in Y , there is a sequence {xn} converging to some point of L in

X with xn ∈ f−1(yn) for every n ∈ N.

Obviously, every 1-scc-mapping is 1-sequence-covering and compact-covering,

and every scc-mapping is sequence-covering and compact-covering. Every

compact-covering open mapping on first-countable spaces is a 1-scc-mapping [27].

Theorem 5.9. Suppose that f : X → Y is an scc-mapping, where X is first-

countable. Then f is a 1-sequence-covering mapping.

Proof. Let K be a compact subset of Y . There exists a compact subset L of

X such that f(L) = K, and whenever {tn} converges to some point of K in Y ,

there is a sequence {sn} converging to some point of L in X with sn ∈ f−1(tn)

for every n ∈ N. Let y ∈ K. Then there exists a point xy ∈ ∂f−1(y) ∩ L such

that if U is a neighbourhood of xy in X, f(U) is a sequential neighbourhood of y

in Y .

Otherwise, for every x ∈ ∂f−1(y) ∩ L, there exists an open neighbourhood

Ux of x in X such that f(Ux) is not a sequential neighbourhood of y in Y .

Since {Ux : x ∈ ∂f−1(y) ∩ L} covers ∂f−1(y) ∩ L, there exists a finite subfamily

U = {Uxj
: j ≤ n} of {Ux : x ∈ ∂f−1(y)∩L} covers ∂f−1(y)∩L. For every j ≤ n,

since f(Uxj
) is not a sequential neighbourhood of y in Y , there exists a sequence

z1,j , z2,j , · · · converging to y in Y such that zi,j 6∈ f(Uxj
) for every i ∈ N. Now,we

construct a sequence {yk} in Y satisfying yk = zi,j , where k = j + (i − 1)n, 1 ≤
j ≤ n and i ∈ N. Obviously, {yk} converges to y ∈ K in Y . The mapping f

being sequence-covering, there exists a sequence {uk} converging to some point

u ∈ ∂f−1(y) ∩ L in X such that f(uk) = yk for every k ∈ N. Pick j0 ≤ n such

that u ∈ Uxj0
. Thus there exists a k0 ∈ N such that {uk : k > k0} ⊂ Uxj0

. Pick

i0 ∈ N such that k = j0 + (i0 − 1)n > k0. Then zi0,j0 = yk = f(uk) ∈ f(Uxj0
).

This is a contradiction.
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Let {Uy,n : n ∈ N} be a decreasing neighbourhood base of xy in X. Then

{f(Uy,n) : n ∈ N} is an sn-network of y in Y . By Lemma 5.2, if {yn} is a

sequence converging to y in Y , then there exists a sequence {xn} converging to

xy in X with xn ∈ f−1(yn) for every n ∈ N. So f is 1-sequence-covering. �

We still do not know whether every scc-mapping on compact spaces is a 1-

sequence-covering mapping or not [27].

Question 5.10. Suppose that f : X → Y is a sequence-covering boundary-

compact mapping. Is f a 1-sequence-covering mapping if X satisfies one of the

following conditions?

(1) Every compact subset of X has a countable sn-network in X.

(2) Every compact subset of X has a countable outer sn-network in X.

(3) X has a compact-countable sn-network.
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