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A Note on Partial b-Metric Spaces

Xun Ge and Shou Lin

Abstract. Let (X, b) be a partial b-metric space with coefficient s ≥ 1. For
each x ∈ X and each ε > 0, put B(x, ε) = {y ∈ X : b(x, y) < b(x, x)+ε}
and put B = {B(x, ε) : x ∈ X and ε > 0}. In this brief note, we prove
that B is not a base for any topology on X, which shows that a claim
on partial b-metric spaces is not true. However, B can be a subbase for
some topology τ on X. For a sequence in X, we also give some relations
between convergence with respect to τ and convergence with respect
to b.
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1. Introduction

Recently, partial b-metric spaces were introduced and discussed in [1].

Definition 1.1 [1]. Let X be a non-empty set. A mapping b : X × X −→
[0,+∞) is called a partial b-metric with coefficient s ≥ 1 and (X, b) is called
a partial b-metric space with coefficient s ≥ 1 if the following are satisfied for
all x, y, z ∈ X.
(1) x = y ⇐⇒ b(x, x) = b(y, y) = b(x, y).
(2) b(x, y) = b(y, x).
(3) b(x, x) ≤ b(x, y).
(4) b(x, z) ≤ s(b(x, y) + b(y, z)) − b(y, y).

And the following claim was given in [1] without proof.

Claim 1.2 [1]. Every partial b-metric “b” on a nonempty set X generates
a topology τb on X whose base is the family of open b-balls Bb(x, ε) where
τb = {Bb(x, ε) : x ∈ X, ε > 0} and Bb(x, ε) = {y ∈ X : b(x, y) < b(x, x) + ε}.

In this brief note, we give an example to show that the above Claim 1.2 is
not true. More precisely, let (X, b) be a partial b-metric space with coefficient
s ≥ 1. For each x ∈ X and each ε > 0, put B(x, ε) = {y ∈ X : b(x, y) <
b(x, x) + ε} and put B = {B(x, ε) : x ∈ X and ε > 0}. We prove that B is
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not a base for any topology on X, hence is not a topology on X. However,
B can be a subbase for some topology τ on X. For a sequence in X, we also
give some relations between convergence with respect to τ and convergence
with respect to b.

2. The Main Results

Example 2.1. Let X = {x, y, z} and put b : X × X −→ [0,+∞) as follows.
(1) b(x, x) = b(z, z) = 1 and b(y, y) = 0.5.
(2) b(x, z) = b(z, x) = 1.5.
(3) b(y, z) = b(z, y) = 1.
(4) b(x, y) = b(y, x) = 3.

It is not difficult to check that (X, b) is a partial b-metric space with
coefficient s = 3. For each u ∈ X and each ε > 0, put B(u, ε) = {v ∈
X : b(u, v) < b(u, u)+ ε} and put B = {B(u, ε) : u ∈ X and ε > 0}. We show
that B is not a base for any topology on X as follows.
(1) Since b(x, z) = 1.5 < 1 + 1 = b(x, x) + 1, z ∈ B(x, 1).
(2) For any ε > 0, B(z, ε) � B(x, 1). In fact, since b(y, z) = 1 < 1 + ε =

b(z, z) + ε, y ∈ B(z, ε). On the other hand, b(x, y) = 3 ≮ 2 = 1 + 1 =
b(x, x) + 1, so y 	∈ B(x, 1).

By the above (1) and (2), B is not a base for any topology on X,
hence B is not a topology on X.

Remark 2.2. Example 2.1 shows that Claim 1.2 is not true.

Proposition 2.3. Let (X, b) be a partial b-metric space with coefficient s ≥ 1.
For each x ∈ X and each ε > 0, put B(x, ε) = {y ∈ X : b(x, y) < b(x, x) + ε}
and put B = {B(x, ε) : x ∈ X and ε > 0}. Then B is a subbase for some
topology τ on X.

Proof. Pick ε > 0. Then b(x, x) < b(x, x) + ε for all x ∈ X. It follows that
X =

⋃
B. So B is a subbase for some topology τ on X. �

Let (X, b) be a partial b-metric space. In this paper, τ denotes the
topology on X, B denotes a subbase for the topology τ and B(x, ε) denotes
the b-ball in (X, b), which are described in Proposition 2.3. In addition, U
denotes the base generated by the subbase B and N denote the set of all
natural numbers.

Shukla [1] claimed that (X, τb) is T0, but need not be T1. However, it is
necessary to re-examine the separations of (X, τ) by Remark 2.2.

Proposition 2.4. Let (X, b) be a partial b-metric space. Then (X, τ) is a T0-
space.

Proof. Let x, y ∈ X and x 	= y. By Definition 1.1(3), b(x, y)− b(x, x) ≥ 0 and
b(x, y)−b(y, y) ≥ 0. Further, we have b(x, y)−b(x, x) 	= 0 or b(x, y)−b(y, y) 	=
0 from Definition 1.1(1). So b(x, y) − b(x, x) > 0 or b(x, y) − b(y, y) > 0.
Without loss of generality, we assume that b(x, y) − b(x, x) > 0. There is
ε > 0 such that b(x, y) − b(x, x) > ε, i.e., b(x, y) > b(x, x) + ε. So y 	∈
B(x, ε) ∈ B ⊆ τ . This proves that (X, τ) is a T0-space. �
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Remark 2.5. It is well-known that a partial metric space need not to be a
T1-space. So a partial b-metric space (X, b) need not to be T1.

Let (X, b) be a partial b-metric space. For a sequence in X, we discuss
the relations between convergence with respect to τ and convergence with
respect to b.

Definition 2.6. Let (X, b) be a partial b-metric space with coefficient s ≥ 1.
A sequence {xn} in X is called to converge to x ∈ X with respect to b if for
any ε > 0, there is n0 ∈ N such that b(x, xn) < b(x, x) + ε for all n > n0.

Proposition 2.7. Let (X, b) be a partial b-metric space and {xn} be a sequence
in X. If {xn} converges to x ∈ X with respect to τ , then {xn} converges to
x ∈ X with respect to b.

Proof. Let {xn} converge to x ∈ X with respect to τ . For any ε > 0, since
x ∈ B(x, ε) ∈ τ , there is n0 ∈ N such that xn ∈ B(x, ε) for all n > n0. It
follows that b(x, xn) < b(x, x)+ ε for all n > n0. So {xn} converges to x ∈ X
with respect to b. �

The above Proposition 2.7 can not be reversed.

Example 2.8. Let (X, b) be the partial b-metric space described in Exam-
ple 2.1. For each n ∈ N, put un = y, then {un} is a sequence in X.

Claim 1: {un} converges to z ∈ X with respect to b.
In fact, For any ε > 0, b(z, y) = 1 < 1 + ε = b(z, z) + ε, i.e., b(z, un) <

b(z, z) + ε for all n ∈ N. So {un} converges to z ∈ X with respect to b.
Claim 2: {un} does not converge to z ∈ X with respect to τ .
Since b(z, x) = 1.5 > 1+0.2 = b(z, z)+0.2, x 	∈ B(z, 0.2). Also, b(z, y) =

1 < 1 + 0.2 = b(z, z) + 0.2, hence y ∈ B(z, 0.2). Note that z ∈ B(z, 0.2).
So B(z, 0.2) = {y, z} ∈ B ⊆ τ . On the other hand, since b(x, y) = 3 =
1 + 2 = b(x, x) + 2, y 	∈ B(x, 2). Also, b(x, z) = 1.5 < 3 = b(x, x) + 2, hence
z ∈ B(x, 2). Note that x ∈ B(x, 2). So B(x, 2) = {x, z} ∈ B ⊆ τ . It follows
that {z} = B(z, 0.2)

⋂
B(x, 2) ∈ τ . However, {un} is not eventually in {z}.

So {un} does not converge to z ∈ X with respect to τ .

In the end, we raise the following question.

Question 2.9. Let (X, b) be a partial b-metric space with coefficient s > 1. Is
there a base F for some topology T on X satisfying the following (1) and
(2)?
(1) F consists of some “b-balls type” sets.
(2) Topology T coincides with topology τ .
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