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Let X be a metrizable space. Let FP(Y ) and AP(X) be the free paratopological 
group over X and the free Abelian paratopological group over X, respectively. 
Firstly, we use asymmetric locally convex spaces to prove that if Y is a subspace of 
X then AP(Y ) is topological subgroup of AP(X). Then, we mainly prove that:

(a) if the tightness of AP(X) is countable then the set of all non-isolated points in 
X is separable;

(b) if X is a z-space, then AP(X) is a k-space if and only if X is locally compact, 
locally countable and the set of all non-isolated points in X is countable;

(c) AP2(X) is first-countable if and only if the set of all non-isolated points in X
is finite.

Moreover, we show that, for a Tychonoff space X, AP(X) has a countable k-network 
if and only if X is a countable space with a countable k-network. Finally, we 
give negative answers to three questions which were posed by Arhangel’skǐı and 
Tkachenko in [3]. Some questions concerned with free paratopological groups are 
posed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In 1941, free topological groups were introduced by A.A. Markov in [17] with the clear idea of extending 
the well-known construction of a free group from group theory to topological groups. Now, free topological 
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groups have become a powerful tool of study in the theory of topological groups and serve as a source of 
various examples and as an instrument for proving new theorems, see [3].

In 2002, S. Romaguera, M. Sanchis and M.G. Tkachenko in [20] defined free paratopological groups. 
Recently, A.S. Elfard, F. Lin, P. Nickolas, N.M. Pyrch and A.V. Ravsky have investigated some properties 
of free paratopological groups, see [6,7,14,15,18,19]. The topological properties of free topological groups 
over metric spaces were discussed in [2,21,22]. However, the topological properties of free paratopological 
groups over metric spaces are still unknown.

A relation V on a topological space X is a neighbornet of X provided V (x) = {y : (x, y) ∈ V } is a 
neighborhood of x for each x ∈ X. A sequence {Vn : n ∈ ω} of neighbornets of a space X is called a normal 
sequence provided V 2

n+l ⊂ Vn for every l, n ∈ N. A neighbornet V of X is normal if V is a member of a 
normal sequence of neighbornets of X. A topological space X such that each neighbornet of X is normal, 
is called a z-space [13].

In this paper we mainly consider the free Abelian paratopological groups over metric spaces. The content 
is organized as follows:

In Section 3, we prove that if Y is a subspace of a metrizable space X then AP(Y ) is topological subgroup 
of AP(X). In Section 4, we prove that if the tightness of AP(X) over a metrizable space X is countable 
then the set of all non-isolated points in X is separable. In Section 5, we mainly prove that: (1) If X is a 
metrizable z-space, then AP(X) is a k-space if and only if X is locally compact, locally countable and the 
set of all non-isolated points in X is countable; (2) AP2(X) is first-countable if and only if the set of all 
non-isolated points in X is finite and X is metrizable. In Section 6, we prove that, for a Tychonoff space X, 
AP(X) has a countable k-network if and only if X is a countable space with a countable k-network.

2. Preliminaries

All spaces are T1 unless stated otherwise. The letter e denotes the neutral element of a group. For a 
space X, we always denote I(X) and NI (X) the set of all isolated points of X and the set of all non-isolated 
points of X, respectively. Readers may consult [3,9–11] for notations and terminology not explicitly given 
here.

A paratopological group G is a group G with a topology such that the product mapping of G ×G into G
is continuous.

Definition 2.1. ([20]) Let X be a subspace of a paratopological group G. Assume that

(1) the set X generates G algebraically, that is 〈X〉 = G;
(2) each continuous mapping f : X → H to a paratopological group H extends to a continuous homomor-

phism f̂ : G → H.

Then G is called the Markov free paratopological group on X and is denoted by FP(X).

Again, if all the groups in the above definitions are Abelian, then we get the definition of the Markov 
free Abelian paratopological group on X which is denoted by AP(X).

Throughout this paper, we use PG(X) to denote the paratopological group FP(X) or AP(X).
Since X generates the free group FPa(X), each element g ∈ FPa(X) has the form g = xε1

1 · · ·xεn
n , where 

x1, · · · , xn ∈ X and ε1, · · · , εn = ±1. This word for g is called reduced if it contains no pair of consecutive 
symbols of the form xx−1 or x−1x. It follows that if the word g is reduced and non-empty, then it is 
different from the neutral element of FPa(X). In particular, each element g ∈ FPa(X) distinct from the 
neutral element can be uniquely written in the form g = xε1

1 xε2
2 · · ·xεn

n , where n ≥ 1, εi ∈ Z \ {0}, xi ∈ X, 
and xi �= xi+1 for each i = 1, · · · , n − 1. Similar assertions are valid for APa(X). For every non-negative 
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integer n, denote by FPn(X) and APn(X) the subspace of paratopological group FP(X) and AP(X) that 
consists of all words of reduced length ≤ n with respect to the free basis X, respectively. We also use Bn(X)
to denote the set FPn(X) or APn(X) for every non-negative integer n.

Let X be a space. For each n ∈ N, denote by in the multiplication mapping from (X ⊕X−1
d ⊕ {e})n to 

Bn(X), in(y1, · · · , yn) = y1 · · · · · yn for every point (y1, · · · , yn) ∈ (X ⊕X−1
d ⊕ {e})n, where X−1

d is the set 
X−1 equipped with discrete topology.

By a quasi-uniform space (X, U ) we mean the natural analog of a uniform space obtained by dropping 
the symmetry axiom. For each quasi-uniformity U the filter U −1 consisting of the inverse relations U−1 =
{(y, x) : (x, y) ∈ U} where U ∈ U is called the conjugate quasi-uniformity of U .

We also recall that the universal quasi-uniformity UX of a space X is the finest quasi-uniformity on X
that induces on X its original topology. Denote by U � the upper quasi-uniformity on R the standard base 
of which consists of the sets

Ur =
{
(x, y) ∈ R× R : y < x + r

}
,

where r is an arbitrary positive real number.
Let X be a topological space. Then Xd denotes X when equipped with the discrete topology in place of 

its given topology. In [18], the authors proved that X−1 is discrete in free paratopological groups FP(X)
and AP(X) if X is a T1-space.

3. Topological monomorphisms between free Abelian paratopological groups

Let X be a real vector space. An asymmetric seminorm on X is a positive sublinear function p : X −→
[0, ∞), that is, for all x, y ∈ X, p satisfies the following conditions:

(AN1) p(x) ≥ 0;
(AN2) p(tx) = tp(x), t ≥ 0;
(AN3) p(x + y) ≤ p(x) + p(y).

The pair (X, p), where X is a linear space and p is an asymmetric seminorm on X, is called a space with 
asymmetric seminorm.

An asymmetric seminorm p on X generates a topology τp on X, having as basis of neighborhoods of a 
point x ∈ X the family {Bp(x, r) : r > 0} of open p-balls, where each Bp(x, r) = {y ∈ X : p(y − x) < r}.

Let now P be a family of asymmetric seminorms on a real vector space X. Denote by F (P) the family 
of all nonempty finite subsets of P, and for F ∈ F (P), x ∈ X, and r > 0, let

BF (x, r) =
{
y ∈ X : p(y − x) < r, p ∈ F

}
=

⋂{
Bp(x, r) : p ∈ F

}
denote the open multiball of center x and radius r. It is immediate that these multiballs are convex absorbing 
subsets of X. Letting

pF (x) = max
{
p(x) : p ∈ F

}
, x ∈ X,

then pF is an asymmetric seminorm on X and

BF (x, r) = BpF
(x, r).

Definition 3.1. ([5]) The asymmetric locally convex topology associated to the family P of asymmetric 
seminorms on a real vector space X is the topology τP having as basis of neighborhoods of any point x ∈ X

the family {BF (x, r) : F ∈ F (P), r > 0} of convex absorbing open multiballs.
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Clearly, each locally convex space is an asymmetric locally convex space. Moreover, it is easy to see that 
the addition + : X ×X → X is continuous [5].

Proposition 3.2. Let p be an asymmetric seminorm on a real vector space X and τp the topology generated 
by p:

(a) for any fixed x0 ∈ X the multiplication by scalars · : R → X, α �→ αx0, is continuous from R to (X, τp), 
where R endows with Euclidean topology;

(b) the multiplication by scalars is continuous (as a function of two variables) from R+× (X, τp) to (X, τp), 
where R+ = [0, +∞) as a subspace of Euclidean space R.

Proof. (a) Let α0 ∈ R. For ε > 0 let

Vε =
{
x′ ∈ X : p

(
x′ − α0x0

)
< ε

}
be a neighborhood of α0x0 in X. Let

δ = ε

1 + p(x0) + p(−x0)

and

Uδ =
{
α ∈ R : |α− α0| < δ

}
.

Obviously, Uδ is a neighborhood of α0 in R. Then

0 < α− α0 < δ ⇒ p(αx0 − α0x0) = (α− α0)p(x0) = |α− α0|p(x0),

and

0 < α0 − α < δ ⇒ p(αx0 − α0x0) = p
(
(α0 − α)(−x0)

)
= (α0 − α)p(−x0) = |α0 − α|p(−x0),

which imply

p(αx0 − α0x0) ≤ |α0 − α|
[
p(x0) + p(−x0)

]
< δ

[
p(x0) + p(−x0)

]
< ε.

Therefore, we show the continuity of the multiplication at α0.
(b) Let α0 ∈ R+ and x0 ∈ X. For any ε > 0, Vε = {x ∈ X : p(x − x0) < ε} is a neighborhood of α0x0.
Case 1: α0 > 0.
There exists a α0

2 > r0 > 0 such that

(α0 + r0)r0 + r0
[
p(x0) + p(−x0)

]
< ε

since limr→0(α0 + r)r + r[p(x0) + p(−x0)] = 0. Let U = {α ∈ R+ : |α − α0| < r0} and Vr0 = {x ∈ X :
p(x − x0) < r0}. Then U and Vr0 are open neighborhoods of α0 and x0 in R+ and (X, τp), respectively. We 
claim that UVr0 ⊂ Vε. Indeed, for each α ∈ U and x ∈ Vr0 , one obtains

p(αx− α0x0) ≤ p(αx− αx0) + p(αx0 − α0x0)

≤ αp(x− x0) + |α− α0|
[
p(x0) + p(−x0)

]
< (α0 + r0)r0 + r0

[
p(x0) + p(−x0)

]
< ε.

Then we have UVr0 ⊂ Vε. Therefore, we show the continuity of the multiplication at (α0, x0).
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Case 2: α0 = 0.
There exists an r0 > 0 such that

r0
[
p(x0) + r0

]
< ε

since limr→0 r[p(x0) + r] = 0. Let U = {α ∈ R+ : 0 ≤ α < r0} and Vr0 = {x ∈ X : p(x − x0) < r0}. Then 
U and Vr0 are open neighborhoods of 0 and x0 in R+ and (X, τp), respectively. We claim that UVr0 ⊂ Vε. 
Indeed, for each α ∈ U and x ∈ Vr0 , one obtains

p(αx) = αp(x) ≤ α
(
p(x− x0) + p(x0)

)
< r0

[
r0 + p(x0)

]
< ε.

Then we have UVr0 ⊂ Vε. Therefore, we show the continuity of the multiplication at (0, x0).
Therefore, the multiplication by scalars is continuous from R+ × (X, τp) to (X, τp). �
From the proof of Proposition 3.2, we have

Proposition 3.3. Let (X, P) be an asymmetric locally convex space and τP the topology generated by P:

(a) for any fixed x0 ∈ X the multiplication by scalars · : R → X, α �→ αx0, is continuous from R to (X, τP), 
where R endows with Euclidean topology;

(b) the multiplication by scalars is continuous (as a function of two variables) from R+×(X, τP) to (X, τP), 
where R+ = [0, +∞) as a subspace of Euclidean space R.

Definition 3.4. ([11]) A topological space X is a stratifiable space if X is T1 and, to each open U in X, on 
can assign a sequence {Un}∞n=1 of open subsets of X such that

(a) U−
n ⊂ U ;

(b)
⋃∞

n=1 Un = U ;
(c) Un ⊂ Vn whenever U ⊂ V .

Note: Clearly, each metrizable space is stratifiable and each regular stratifiable space is hereditarily 
paracompact [11].

The proof of the following Theorem 3.6 is quite similar to [4, Theorem 4.3]. However, Theorem 3.6 plays 
an important role in this paper, thus we give out the proof.

For each open subset U of stratifiable space X and x ∈ U , let n(U, x) be the smallest integer n such that 
x ∈ Un, and let

Ux = Un(U,x) −
(
X − {x}

)−
n(U,x).

Lemma 3.5. ([4]) For U, V open subsets of stratifiable space X, x ∈ U and y ∈ V , we have the following:

(i) Ux is an open neighborhood of x;
(ii) Ux ∩ Vy �= ∅ and n(U, x) ≤ n(V, y) implies y ∈ U ;
(iii) Ux ∩ Vy �= ∅ implies x ∈ V or y ∈ U .

Theorem 3.6. Let X be a stratifiable space, Y a closed subset of X, E an asymmetric locally convex space, 
C(X, E) the linear space of continuous functions from X into E, and similarly for C(Y, E). Then there
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exists a mapping

φ : C(Y,E) −→ C(X,E)

satisfying the following conditions:

(a) φ(f) is an extension of f for each f ∈ C(Y, E);
(b) the range of φ(f) is contained in the convex hull of the range of f , for each f ∈ C(Y, E).

Proof. Let W = X − Y , and let

W ′ = {x ∈ W : x ∈ Uy for some y ∈ Y and open U containing y}.

For every x ∈ W ′, let

m(x) = max
{
n(U, y) : y ∈ Y and x ∈ Uy

}
.

We claim that m(x) < n(W, x) for each x ∈ W ′. If not, there exists x ∈ W ′ such that m(x) ≥ n(W, x). 
Therefore, there are y ∈ Y and open neighborhood U of y, such that x ∈ Uy (thus Wx ∩ Uy �= ∅) and 
n(U, y) ≥ n(W, x); then y ∈ W by Lemma 3.5(ii), which is impossible.

Obviously, {Wx : x ∈ W} is an open cover of the open subspace W in X. Since W is a paracompact 
space, {Wx : x ∈ W} has an open locally finite refinement V with respect to W . Let {pV : V ∈ V } be a 
partition of unity subordinated to V . For every V ∈ V , choose xV ∈ W such that V ⊂ WxV

. If xV ∈ W ′, 
pick aV ∈ Y and open SV containing aV such that xV ∈ (SV )aV

and n(SV , aV ) = m(xV ); if xV /∈ W ′, let 
aV be the fixed point a0 ∈ Y .

Define g : X −→ E by

g(x) =
{

f(x), if x ∈ Y,∑
V ∈V pV (x)f(aV ), if x ∈ W.

Obviously, g(X) is contained in the convex hull of f(Y ) and g is continuous on W by Proposition 3.3. 
Next we shall show that g is continuous at Y .

Take any point b ∈ Y . Let O be any open subset of E containing f(b). By the local convexity of E, 
there exists a convex open subset K of E such that f(b) ⊂ K ⊂ O. Moreover, since f is continuous, there 
exists an open neighborhood N of b in X such that f(Y ∩ N) ⊂ K ⊂ O. We claim that g((Nb)b) ⊂ O. 
Indeed, if x ∈ (Nb)b ∩ Y ⊂ N ∩ Y then g(x) = f(x) ∈ O. Let x ∈ (Nb)b \ Y . Consider any V ∈ V with 
x ∈ V . Since b /∈ WxV

and x ∈ (Nb)b ∩WxV
, it follows from Lemma 3.5(iii) that xV ∈ Nb; hence xV ∈ W ′

and n(N, b) ≤ m(xV ) = n(SV , aV ). It follows from Lemma 3.5(ii) that aV ∈ N since xV ∈ Nb ∩ (SV )aV
. 

Therefore f(aV ) ∈ K and, by the convexity of K, we have g(x) ∈ K ⊂ O. Thus g((Nb)b) ⊂ O. Hence g is 
continuous on Y . Finally, we only let φ(f) = g. �
Lemma 3.7. If (X, UX) is a regular stratifiable space, then every point of (X, U −1

X ) is discrete in (X, U −1
X ).

Proof. Take any point x0 ∈ X. Since X is a stratifiable space, there exists a point finite open cover U
of X such that |U | ≥ 2. Then there exists an U0 ∈ U such that x0 ∈ U0. Put V = {U \ {x0} : U ∈
U \ {U0}} ∪ {U0}. Then V is also a point finite open cover of X. Let W = {(x, y) : x ∈ X and y ∈

⋂
Cx}, 

where each Cx =
⋂
{V ∈ V : x ∈ V }. It follows from [10, Theorem 6.21(d)] that W ∈ UX , and hence 

W−1 ∈ U −1
X . Clearly, we have W−1(x0) = {x0}, and thus x0 is a discrete point in (X, U −1

X ). By the 
arbitrary of taking the point x0, every point of (X, U −1

X ) is discrete in (X, U −1
X ). �
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Definition 3.8. A quasi-pseudometric d on a set X is a function from X × X into the set of non-negative 
real numbers such that for x, y, z ∈ X: (a) d(x, x) = 0 and (b) d(x, y) ≤ d(x, z) + d(z, y). If d satisfies the 
additional condition (c) d(x, y) = 0 ⇔ x = y, then d is called a quasi-metric on X.

Every quasi-pseudometric d on X generates a topology F (d) on X which has as a base the family of 
d-balls {Bd(x, r) : x ∈ X, r > 0}, where Bd(x, r) = {y ∈ X : d(x, y) < r}.

Definition 3.9. ([15]) Let X be a subspace of a Tychonoff space Y .

(1) The subspace X is quasi-P -embedded in Y if each continuous quasi-pseudometric from (X × X,

U −1
X × UX) to (R, U �) admits a continuous extension from (Y × Y, U −1

Y × UY ) to (R, U �).
(2) The subspace X is quasi-P ∗-embedded in Y if each bounded continuous quasi-pseudometric from (X×X,

U −1
X × UX) to (R, U �) admits a continuous extension from (Y × Y, U −1

Y × UY ) to (R, U �).

Theorem 3.10. Let Y be a subset of a Tychonoff stratifiable space X. Then Y is quasi-P -embedded. In 
particular, Y is quasi-P ∗-embedded.

Proof. Let ρ be a continuous quasi-pseudometric defined on from (Y × Y, U −1
Y × UY ) to (R, U �). Denote 

by M the set Y with the quasi-metric topology induced in the obvious way by ρ and let f : Y −→ M be 
the natural continuous projection. It follows from [1] that M is isometrically embedded in an asymmetric 
seminormed space B. Since X is a Tychonoff stratifiable space, it follows from Theorem 3.6 that each 
continuous mapping f : Y −→ B into an arbitrary asymmetric locally convex space B is continuously 
extendable onto X. Then we can find a continuous extension f̃ : X −→ B of f into B. Let ρ̃(x, y) =
‖f̃(y) − f̃(x)|, where x, y ∈ X and ‖ · | denotes the asymmetric seminorm in B. Then it is easy to see that 
ρ̃ is a quasi-pseudometric on X and ρ̃|Y = ρ. Since X is a Tychonoff stratifiable space, it follows from 
Lemma 3.7 that (X, U −1

X ) is a discrete space. Therefore, it follows from the continuity of f̃ that ρ̃ is a 
continuous mapping from (X ×X, U −1

X × UX) to (R, U �). �
Lemma 3.11. ([15]) Let Y be an arbitrary subspace of a Tychonoff space X. Then the natural mapping 
êY,X : AP(Y ) → AP(X) is a topological monomorphism if and only if Y is quasi-P ∗-embedded in X.

By Theorem 3.10 and Lemma 3.11, we can easily get the following important theorem.

Theorem 3.12. Let Y be a subset of a Tychonoff stratifiable space X. Then AP(Y, X) is naturally topologically 
isomorphic to AP(Y ).

Theorem 3.13. Let Y be a subset of a metrizable space X. Then AP(Y, X) is naturally topologically isomor-
phic to AP(Y ).

By Theorem 3.13, it is natural to pose the following question.

Question 3.14. Let Y be a closed subset of metrizable space X. Is FP(Y, X) naturally topologically isomorphic 
to FP(Y )?

4. Countable tightness of free Abelian paratopological groups

In this section, we shall show that if the tightness of AP(X) over a metric space X is countable then the 
set of all non-isolated points in X is separable. To begin, we need the following propositions.
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Proposition 4.1. If X is a Tychonoff space and n ≥ 1, then we have the following statements:

(1) each in(Xn) is closed in PG(X);
(2) each in|Xn : Xn −→ in(Xn) ⊂ FPn(X) is a homeomorphism mapping;
(3) each in|Xn : Xn −→ in(Xn) ⊂ APn(X) is a perfect mapping.

Proof. Obviously, the canonical embedding i : X −→ βX can be extend to a continuous homomorphism 
î : PG(X) −→ PG(βX). Since PG(βX) is algebraically free on βX and the restriction of ̂i to X is one-to-one, 
î must be an injective mapping. For each n ≥ 1, consider the mapping i∗n : (βX)n −→ PG(βX) defined by 
formula

i∗n(y1, y2, · · · , yn) = y1y2 · · · yn

for all y1, y2, · · · , yn ∈ βX. Obviously, i∗n is continuous and the restriction of i∗n to Xn coincides with î ◦ jn
for each n ≥ 1, where jn = in|Xn .

(1) Clearly, each i∗n((βX)n) is closed in PG(βX). Then

î
(
jn
(
Xn

))
= î

(
PG(X)

)
∩ i∗n

(
(βX)n

)
,

thus ̂i(jn(Xn)) is closed in ̂i(PG(X)). Since ̂i is one-to-one mapping from PG(X) onto PG(βX), jn(Xn) =
in(Xn) is closed in PG(X).

(2) Obviously, in|Xn : Xn −→ in(Xn) ⊂ FPn(X) is a continuous one-to-one mapping and i∗n : (βX)n −→
FPn(βX) is a perfect mapping. Let Pn = î(in(Xn)). Then (i∗n)←(Pn) = Xn. Therefore, i∗n|Xn = î ◦ in|Xn

is also a perfect mapping [9]. It follows from [9, Proposition 3.7.10] that in|Xn : Xn −→ in(Xn) ⊂ FPn(X)
is a perfect mapping, thus it is a homeomorphism mapping.

(3) By the proof of (2), it is easy to see that each in|Xn : Xn −→ in(Xn) ⊂ APn(X) is a perfect 
mapping. �

Similarly, we can show that

Proposition 4.2. If X is a space and n ≥ 1, then we have the following statements:

(1) each in((X−1
d )n) is closed in PG(X);

(2) each in|(X−1
d )n : (X−1)n −→ in((X−1)n) ⊂ FPn(X) is a homeomorphism mapping;

(3) each in|(−Xd)n : (−Xd)n −→ in((X−1)n) ⊂ APn(X) is a perfect mapping.

Proposition 4.3. If X is a Tychonoff space, then the group AP(X) contains a closed homeomorphic copy 
of Xn, for each positive integer n.

Proof. If n = 1, it is obvious. Let n ≥ 2 be a positive integer. Consider the mapping j : Xn −→ AP(X)
defined by f(x1, x2, · · · , xn) = x1 + 2x2 + · · · + 2n−1xn for each (x1, x2, · · · , xn) ∈ Xn. Obviously, f is 
continuous. Apply induction on n along with the fact X is a free algebraic basis for AP(X) to show that f
is one-to-one.

Let m = 2n − 1. Let g be the embedding g of Xn to Xm defined by the formula

g(x1, x2, · · · , xn) = (x1, x2, x2, · · · , xn, · · · , xn),

where each xi appears in the right side of the equality 2i−1 times. Then it is easy to see that g(Xn) is closed 
in Xm and f = im ◦ g, where im : (X ⊕ (−Xd) ⊕ {0})n −→ APm(X). It follows from Proposition 4.1 that 
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im|Xm : Xm −→ APm(X) is perfect, hence the composition im ◦ g is a closed mapping, and thus f is a 
homeomorphism. Therefore, it follows from Proposition 4.1 that im(Xm) is closed in AP(X), so the image 
f(Xn) = im(g(Xn)) is closed in im(Xm) and in AP(X). �
Theorem 4.4. Let X be a regular paracompact sequential space. If the tightness of AP(X) is countable, then 
the set NI (X) of all non-isolated points in X is separable.

Proof. Suppose that NI (X) is non-separable. Then NI (X) is not Lindelöf since X is paracompact. There-
fore, one can choose an uncountable discrete family {Uα : α < ω1} of open sets in X such that each Uα

contains a point xα ∈ NI (X). Since X is sequential, for each α < ω1, one can choose a non-trivial convergent 
sequence Cα ⊂ Uα with the limit point xα (we may assume each xα ∈ Cα). Put

Y =
⋃

{Cα : α < ω1}, Y0 = {xα : α < ω1}.

It is easy to see that Y is closed in X and is homeomorphic to the product C × D(ℵ1), where C is a 
converging sequence and D(ℵ1) is the discrete space of cardinality ℵ1. Let Z be the quotient space obtained 
by identifying the subset Y0 in X to a point and the subspace Z1 = p(Y ) in Z, where p : X −→ Z

is the projection. Since p is closed, it is easy to see that Z1 is homeomorphic to Sω1 . Suppose that the 
tightness of AP(X) is countable. Then the homomorphism p̂ : AP(X) −→ AP(Z) extending quotient 
mapping p : X −→ Z is open [18]. Therefore the tightness of AP(Z) is countable. However AP(Z) contains 
a homeomorphic copy of Z2 by Proposition 4.3, and hence contains a homeomorphic copy of Sω1 × Sω1 . 
However, the tightness of Sω1 × Sω1 is uncountable [12]. �
Corollary 4.5. Let X be a metrizable space. If the tightness of AP(X) is countable, then the set NI (X) of 
all non-isolated points in X is separable.

Theorem 4.6. If X is metrizable and AP(X) is a k-space, then the set NI (X) in X is separable.

Proof. Since X is metrizable, AP(X) is submetrizable [18]. Therefore, every compact subset of AP(X) is 
metrizable [11], then it is sequential since AP(X) is a k-space. Hence X is sequential and the tightness of 
AP(X) is countable, and it follows from Theorems 4.4 that the set NI (X) in X is separable. �
5. k-Properties of free Abelian paratopological groups over metric spaces

In this section, we shall give characterizations of k-properties of free Abelian paratopological groups over 
metric spaces.

The support of a reduced word g = xε1
1 xε2

2 · · ·xεn
n ∈ PG(X) with x1, · · · , xn ∈ X is defined as follows:

supp(g) = {x1, · · · , xn}.

Given a subset K of PG(X), we put

supp(K) =
⋃
g∈K

supp(g).

A subset Y of a space X is said to be bounded in X if each continuous real-valued function on X is 
bounded on Y .

Lemma 5.1. ([2]) If φ is a bounded set in F (X) (in A(X)), then supp(φ) is bounded in X.
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Lemma 5.2. If φ is a bounded set in FP(X) (in AP(X)), then supp(φ) is bounded in X.

Proof. Obviously, the identity mappings from FP(X) to F (X) and AP(X) to A(X) are continuous, and 
hence lemma holds by Lemma 5.1. �
Lemma 5.3. ([6]) Let X be a T1-space and let w = ε1x1 + ε2x2 + · · · + εnxn be a reduced word in APn(X), 
where xi ∈ X and εi = ±1, for all i = 1, 2, · · · , n, and if xi = xj for some i, j = 1, 2, · · · , n, then εi = εj. 
Then the collection B of all sets of the form ε1U1 + ε2U2 + · · ·+ εnUn, where, for all i = 1, 2, · · · , n, the set 
Ui is a neighborhood of xi in X when εi = 1 and Ui = {xi} when εi = −1 is a base for the neighborhood 
system at w in APn(X).

Let X be a set. Then we define j2, k2 : X ×X → FPa(X) by j2(x, y) = x−1y and k2(x, y) = yx−1 for 
all (x, y) ∈ X × X. For the Abelian case we define j∗2 : X × X → APa(X) by j∗2(x, y) = y − x for all 
(x, y) ∈ X ×X.

Suppose that UX is the finest quasi-uniformity of a space X. Set M be the family of all countable 
sequences of mappings FPa(X) → UX . For any ψ : FPa(X) → UX , we define

E(ψ) =
⋃

g∈FPa(X)

g
(
j2
(
ψ(g)

)
∪ k2

(
ψ(g)

))
g−1.

For each n ∈ N, let Sn be the group of permutations of the set {1, 2, · · · , n}. Then for each countable 
sequence Ψ ∈ M , where Ψ = (ψn)n∈N, let

En(Ψ) =
⋃

π∈Sn

E(ψπ(1))E(ψπ(2)) · · ·E(ψπ(n)).

Put

E(Ψ) =
⋃
n∈N

En(Ψ)

and then define WF = {E(Ψ) : Ψ ∈ M }.
Let P be the collection of all countable sequences of elements of UX . For each P = {U1, U2, · · ·} ∈ P, 

let

W (P ) =
{

n∑
i=1

j∗2 (Ui) : n ∈ N

}
, and

W =
{
W (P ) : P ∈ P

}
.

Moreover, fix any n ∈ N. For each U ∈ UX , let

Wn(U) =
{

n∑
i=1

j∗2 (xi, yi) : (xi, yi) ∈ U

}
,

and

Wn =
{
Wn(U) : U ∈ UX

}
.

Theorem 5.4. ([8]) The collection WF as defined above is a neighborhood base at e for the topology of FP(X).
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Theorem 5.5. ([14]) The family W is a neighborhood base of e in AP(X).

Theorem 5.6. ([14]) For each n ∈ N, the family Wn is a neighborhood base of e in AP2n(X).

Proposition 5.7. ([7,16]) Let X be a space. Then i2 : (X⊕X−1
d ⊕{e})2 → FP2(X) (or i2 : (X⊕X−1

d ⊕{e})2 →
AP2(X)) is quotient if and only if X is a z-space.

A space X is called a μ-space if the closure of each bounded subset of X is compact. A mapping f : X → Y

is said to be compact-covering if for each compact subset K of Y , there exists a compact subset L of X
such that f(L) = K.

Theorem 5.8. Let X be a Hausdorff, μ, z-space. For each n ∈ N, in is a compact covering mapping.

Proof. We only show that each in : (X⊕X−1
d ⊕{e})n → APn(X) is a compact covering-mapping. The proof 

of analogous assertion for in : (X ⊕X−1
d ⊕ {e})n → FPn(X) is quite similar. (Indeed, we use Theorem 5.4

instead of Theorem 5.6.)
Fix n ∈ N. Let K a compact subset of APn(X). Next we shall show that there exists a compact subset 

C of (X ⊕X−1
d ⊕ {e})n such that in(C) = K.

For each g ∈ K, we can fix the word g the reduced form

g = η
(
x(g)1

)
x(g)1 + η

(
x(g)2

)
x(g)2 + · · · + η

(
x(g)m

)
x(g)m,

where m ≤ n, x(g)i ∈ X and η(x(g)i) = ±1 for i = 1, 2, · · · , m. Let D be the set of X such that for each 
x ∈ D there exists g ∈ K such that x(g)i = x and η(x(g)i) = −1 for some i ≤ n. Then D is a finite set. 
Suppose not, there exist 1 ≤ m ≤ n and countable infinite set E = {gk : k ∈ N} ⊂ APm(X) \ APm−1(X)
satisfy the following conditions (1)–(3):

(1) for each k ∈ N, we have

gk = −x(gk)1 + η
(
x(gk)2

)
x(gk)2 + · · · + η

(
x(gk)m

)
x(gk)m;

(2) for i �= j, we have x(gi)1 �= x(gj)1;
(3) for i �= j, we have gi �= gj .

Since the translation is a homeomorphism in paratopological group, without loss of generalization, we 
may assume that m is even. Let m = 2l ≤ n.

Claim 1. We have e /∈ E.

Indeed, it follows from Theorem 5.6 that we may assume 
∑m

i=1 η(x(g)i) = 0. Moreover, for each k ∈ N, 
there exists an open neighborhood Uk of x(gk)1 in X such that

Uk ∩
{
x(gk)i : x(gk)i �= x(gk)1, i = 2, · · · ,m

}
= ∅.

Let A = X \ {x(gk)1 : k ∈ N} and

U =
⋃
k∈N

({
x(gk)1

}
× Uk

)
∪
⋃

(A×X).

Since X is a z-space, U is a normal neighbornet. Let Wl(U) = {−x1 + y1 − · · · − xl + yl : (xi, yi) ∈ U}. 
Then it follows from Theorem 5.6 that Wl(U) is an open neighborhood of e in APm(X). We claim that 
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Wl(U) ∩ E = ∅. Indeed, let gk ∈ Wl(U). Then there exists 2 ≤ j ≤ m such that x(gk)j ∈ Uk \ {x(gk)1}, 
η(x(gk)j) = 1 and (x(gk)1, x(gk)j) ∈ {x(gk)1} × Uk. However, x(gk)j /∈ Uk by the definition of Uk, which is 
a contradiction. Therefore, e /∈ E.

Claim 2. E is closed discrete in APm(X).

Suppose E \E �= ∅. Take g ∈ E \E ⊂ APm(X). Then e ∈ (−g)E. However, it is easy to see that (−g)E
satisfies the conditions (1)–(3) in the above, and then e /∈ (−g)E by Claim 1, which is a contradiction. 
Therefore, we have E is closed in APm(X). By Lemma 5.3, it is easy to see that E is discrete.

By Claim 2, E is an infinite closed discrete subset of compact set K, which is a contradiction. Therefore, 
D is finite.

Let A = supp(K). By Lemma 5.2, A is bounded, then the closure A of A in X is compact since X is a 
μ-space. Let B = A⊕D−1⊕{e}. Then B is compact, hence in|Bn is a closed mapping from Bn onto in(Bn). 
Let C = (in|Bn)−1(K). Then C is closed in Bn, thus it is compact. Obviously, we have in(C) = K. �

By Proposition 5.7 and Theorem 5.8, we have the following corollary.

Corollary 5.9. Let X be a metrizable space. If i2 : (X⊕X−1
d ⊕{e})2 → AP2(X) (resp. i2 : (X⊕X−1

d ⊕{e})2 →
FP2(X)) is quotient, then, for each n ∈ N,

in :
(
X ⊕X−1

d ⊕ {e}
)n → APn(X)

(
resp. in :

(
X ⊕X−1

d ⊕ {e}
)n → FPn(X)

)
is a compact covering mapping.

Since each T1 countable space is a z-space [10, Corollary 6.24], we have the following corollary.

Corollary 5.10. Let X be a countable regular space. For each n ∈ N, in is a compact covering mapping.

A space X is said to be a P -space if the intersection of countably many open subsets of X is open in X.

Theorem 5.11. Let X be a μ-space. If X is a P -space, then each in is a compact covering mapping.

Proof. Fix n ∈ N. Let K be a compact subset of FPn(X) (or APn(X)). Put A = supp(K). By Lemma 5.2, 
A is bounded, then the closure A of A in X is compact since X is a μ-space. Since X is a P -space, A is 
finite, and hence K is finite. Therefore, each in is a compact covering mapping. �

The following question is still open.

Question 5.12. Let X be a Hausdorff μ-space. Is i2 a compact covering mapping?

Lemma 5.13. ([9, Theorem 3.3.22]) A continuous mapping f : X −→ Y of a topological space to a k-space 
Y is quotient if and only if for each compact set Z ⊂ Y the restriction f |f−1(Z) : f−1(Z) −→ Z is quotient.

By Theorem 5.11 and Lemma 5.13, we have

Proposition 5.14. Let X be a Hausdorff μ-space. If X is a P -space or a z-space. Then, for each n ∈ N, the 
mapping in is quotient if APn(X) (or FPn(X)) is a k-space.

Lemma 5.15. ([16, Proposition 3.15]) For arbitrary compact first-countable Hausdorff space X, the mapping 
i2 is quotient if and only if X is countable, if and only if X is a z-space.
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Lemma 5.16. ([14]) If Y is a closed subspace of a Tychonoff space X, then the subgroup PG(Y, X) of PG(X)
generated by Y is closed in PG(X).

Theorem 5.17. If X is a metrizable space and AP(X) is a k-space, then X is locally compact and NI (X) is 
separable.

Proof. Suppose that a point x0 ∈ X has no neighborhood with compact closure in X. Choose a decreasing 
countable base {Un : n ∈ N} at the point x0 such that all sets Fn = Un \ Un+1 (n ∈ N) are non-compact. 
For every n ∈ N choose an infinite set Xn = {xn,m : m ∈ N} ⊂ Fn such that it is closed discrete in X, 
where xn,m �= xn,m′ if m �= m′. Put

M = {xn,m : n,m ∈ N} ∪ {x0}.

Obviously, all points of the set M except the point x0, are isolated in M . It follows from Theorem 3.13
and Lemma 5.16 that AP(M) is homeomorphic to a closed subgroup in AP(X). Next we shall show that 
AP(M) is not a k-space.

Assign to each pair k, l of positive integers an element

hk,l = (−x0 + xk,l) + (−x0 + xl,1) + · · · + (−x0 + xl,k) ∈ AP(X)

and consider the sets Hk = {hk,l : l > k}, k ∈ ω and H =
⋃∞

k=0 Hk. Clearly, we have e /∈ H.

Claim 1. For each compact subset K in AP(X), the intersection of H with K is finite.

Obviously, the length of hk,l equals 2k + 2, hence Hk ⊂ AP(X) \ AP2k(X). Moreover, it follows from 
[14, Theorem 3.12] that K ⊂ APn(X) for some n ∈ N. Therefore, K intersects only finitely many sets Hk, 
hence it suffices to show that K ∩Hk is finite for each k ∈ N.

For k, l ∈ N with k < l, put

supp(hk,l) = {x0, xk,l, xl,1, · · · , xl,k}, and

Dk,l = Xk ∩ supp(hk,l).

Then Dk,l = {xk,l} for k, l ∈ N with k < l, hence the family {Dk,l : l > k} is disjoint for each k ∈ N. 
Therefore, the intersection Xk ∩ supp(P ) is infinite for each infinite P ⊂ Hk. Since Xk is closed and discrete 
in metrizable space X, the subspace Xk ∩ supp(P ) is not bounded in X. It follows from Lemma 5.2 that 
the intersection K ∩Hk is finite. Thus the proof of Claim 1 is complete.

Claim 2. e ∈ H.

For each n ∈ N put

Vn = {xk,l : k ≥ n, k, l ∈ N} ∪ {x0}.

Then the family {Vn : n ∈ N} is a base of M at the point x0. For each n ∈ N put

Wn = Δ ∪
(
{x0} × Vn

)
,

where Δ = {(x, x) : x ∈ M}. Then it follows from [10, Proposition 2.34] that the family {Wn : n ∈ N} is a 
base for the finest quasi-uniformity on M .
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Assign to each sequence P = (p1, · · · , pn, · · ·) of naturals a set GP of all elements in AP(M) of the form 
(−y1 + z1) + · · · + (−yr + zr), where r ∈ N, (yi, zi) ∈ Wpi

, i = 1, · · · , r. By Theorem 5.5, the description of 
neighborhoods of the neutral element in AP(M) implies the family {GP : P ∈ N

N} being a base of AP(M)
at the neutral element e. To end the proof it suffices to show that each GP contains a point from H. Fix a 
P = (p1, · · · , pn, · · ·) ∈ N

N. Choose naturals k and l in such a way that k > p1, and l > max{k, p1, · · · , pk}. 
Then (x0, xk,l) ∈ Wk ⊂ Wp1 and (x0, xl,i) ∈ Wl ⊂ Wpi

for each i ≤ k. Therefore, hk,l ∈ GP and Claim 2 is 
proved.

By Claims 1 and 2, it is easy to see that AP(M) is not a k-space. Therefore, X is locally compact. By 
Theorem 4.6, the set NI (X) is countable. �
Theorem 5.18. If X is a metrizable z-space and AP(X) is a k-space, then X is locally compact and locally 
countable. In particular, the set NI (X) is countable.

Proof. By Theorem 5.17, it suffices to show that X is locally countable. Let V be an open neighborhood in 
X with compact closure in X. Since each subspace of a z-space is also a z-space, it follows from Lemma 5.15, 
V must be countable, hence V is countable. Therefore, X is locally countable. �
Lemma 5.19. ([19, Theorem 2]) Let X be a functionally Hausdorff space. Then the following conditions are 
equivalent:

(1) AP(X) is a kω-space;
(2) FP(X) is a kω-space;
(3) X is a countable kω-space.

Proposition 5.20. Let X be a metrizable space. If X is locally compact, locally countable and NI (X) is 
separable, then AP(X) is a k-space.

Proof. Obviously, the set NI (X) is countable, hence we can choose a countable covering γ of X with open 
sets such that each element of γ is countable and has compact closure in X. Put X0 =

⋃
{U : U ∈ γ}. 

Obviously, X0 is a countable kω-space and X1 = X \ X0 is closed discrete in X. It follows from [18, 
Proposition 2.13] that AP(X) = AP(X0) × AP(X1). Clearly, AP(X1) is discrete. By Lemma 5.19, we see 
that AP(X0) is a kω-space. �
Theorem 5.21. Let X be a metrizable z-space. Then the following conditions are equivalent:

(1) AP(X) is a k-space;
(2) AP(X) is homeomorphic to a product of a countable kω-space with a discrete space;
(3) X is locally compact, locally countable and NI (X) is separable.

Proof. Obviously, (2) ⇒ (1). By Theorem 5.18 and the proof of Proposition 5.20, we have (1) ⇒ (3) and 
(3) ⇒ (2), respectively. �

Since AP(X) is a quotient of FP(X), it follows from Theorems 5.17 and 5.18 that we have the following 
two corollaries.

Corollary 5.22. Let X be a metrizable space. If FP(X) is a k-space, then X is locally compact and NI (X)
is separable.
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Corollary 5.23. Let X be a metrizable z-space. If FP(X) is a k-space, then X is locally compact, locally 
countable and NI (X) is separable.

Naturally, we have the following question.

Question 5.24. Let X be a metrizable space. If AP(X) (or FP(X)) is a k-space, is X a z-space?

We also define the cardinal function qu(X) called the finest quasi-uniform weight of X by

qu(X) = min
{
|B| : B is a base for UX

}
.

The proofs of the following two propositions are similar to the proofs which was given in [22, Lemma 3.1 
and Proposition 3.2], respectively. However, we give out the proofs for the completeness.

Proposition 5.25. Let X be a space and m, n ∈ N with n ≤ m. If B is a neighborhood of e in FPm+n(X)
and g ∈ FPn(X), then gB ∩ FPm(X) is a neighborhood of g in FPm(X). The same is true in the Abelian 
case.

Proof. Let U be a neighborhood of e in FP(X) such that U ∩ FPm+n(X) ⊂ B. Since gU ∩ FPm(X) is 
a neighborhood of g in FPm(X), it suffices to show that gU ∩ FPm(X) ⊂ gB ∩ FPm(X). Take arbitrary 
point h ∈ gU ∩FPm(X). Then there exists u ∈ U such that h = gu. Since the length of h ≤ m (we write it 
�(h) ≤ m.) and �(g) ≤ n, we have �(u) ≤ n +m, and hence u ∈ FPm+n(X). Therefore, u ∈ U ∩FPm+n(X)
and = gu ∈ gB ∩ FPm(X). Hence we have gU ∩ FPm(X) ⊂ gB ∩ FPm(X). �
Proposition 5.26. Let X be a space, m, n ∈ N with n ≤ m and κ be a cardinal. Then we have:

(1) if χ(e, FPm+n(X)) ≤ κ, then χ(g, FPm(X)) ≤ κ for each g ∈ FPn(X), and
(2) if χ(0, APm+n(X)) ≤ κ, then χ(g, APm(X)) ≤ κ for each g ∈ APn(X).

Proof. Since the proofs of (1) and (2) are similar, we only show (2). Let U be a neighborhood base at e
in AP(X) and Bm+n be a neighborhood base at e in APm+n(X) such that |Bm+n| ≤ κ. Let g ∈ APn(X)
and put

Bm(g) =
{
gB ∩ APm(X) : B ∈ Bm+n

}
.

Then each element of Bm(g) contains g and |Bm(g)| ≤ κ. For each U ∈ U , it is easy to see that there 
exists B ∈ Bm+n such that gB ∩ APm(X). On the other hand, Proposition 5.25 shows that each element 
of Bm(g) is a neighborhood of g in APm(X). Therefore, Bm(g) is a neighborhood base of g in APm(X)
and |Bm(g)| ≤ κ. Hence we have χ(g, APm(X)) ≤ κ for each g ∈ APn(X). �
Theorem 5.27. For a space X and a cardinal κ the following are equivalent:

(1) χ(APn(X)) ≤ κ for each n ∈ N;
(2) χ(AP2(X)) ≤ κ;
(3) qu(X) ≤ κ.

Proof. By Theorem 5.6 and Proposition 5.26, we have (1) ⇒ (2) and (3) ⇒ (1). So we shall show that 
(2) ⇒ (3).
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By Theorem 5.6, W1 = {W1(U) : U ∈ UX} is a neighborhood base at 0 in AP2(X). Since χ(AP2(X)) ≤ κ, 
there exists B ⊂ UX with |B| ≤ κ such that {W1(B) : B ∈ B} is also a neighborhood base at 0 in AP2(X). 
It follows from the definition of W1(B) that W1(U1) ⊂ W1(U2) if and only if U1 ⊂ U2. Therefore, B is a 
base for UX , and hence qu(X) ≤ κ. �
Theorem 5.28. For a regular space X, then the following are equivalent:

(1) APn(X) is first-countable for each n ∈ N;
(2) AP2(X) is metrizable;
(3) AP2(X) is first-countable;
(4) the set NI (X) is finite and X is metrizable.

Proof. Obviously, (1) ⇒ (3), (2) ⇒ (3) and (4) ⇒ (1). It suffices to show that (3) ⇒ (4) and (4) ⇒ (2).
(3) ⇒ (4). It is well-known that the fine quasi-uniformity of a regular space has a countable base if 

and only if it is a metric space with only finitely many non-isolated points [10, Proposition 2.34]. By 
Theorem 5.27, it is easy to see that the set NI (X) is finite and X is metrizable.

(4) ⇒ (2). Since NI (X) is finite and X is metrizable, it follows from [10, Proposition 6.25] that X is a 
z-space, and it follows from Lemma 5.15 that the mapping i2 : (X ⊕X−1

d ⊕{e})2 −→ AP2(X) is a quotient 
mapping, hence it is closed [16]. It is easy to see that i2 is a boundary-compact mapping, and therefore, 
AP2(X) is metrizable by Hanai–Morita–Stone Theorem. �

The proof of the following theorem is similar to [22, Theorem 4.4]. Hence we give an outline of the proof.

Theorem 5.29. Let X be a metrizable space such that the set C of all non-isolated points in X is finite. 
Then APn(X) has a σ-disjoint base for each n ∈ N.

Proof. Let d be a metric on X which induces the topology on X, and let Bd(x, r) = {y : d(x, y) < r}
for each real number r > 0 and x ∈ X. For each k ∈ N, put Gk = {Bd(x, 1k ) : x ∈ NI (X)}, and put 
Uk =

⋃
{{x} ×Bd(x, 1k ) : x ∈ NI (X)} ∪ΔX , where ΔX is the diagonal of X ×X. By [10, Proposition 2.34], 

the family {Uk : k ∈ N} is the countable base of the fine quasi-uniformity for X. Therefore, it follows from 
Theorem 5.6 that Wm = {Wm(Uk) : k ∈ N} is a neighborhood base at 0 in AP2m(X) for each m ∈ N.

Fix n ∈ N. For each g ∈ APn(X), put g = gX\C +gC , where gX\C ∈ APn(X \C) and gC ∈ APn(C), and 
put k(g) = min{m ∈ N : x /∈

⋃
Gk for each x ∈ supp(gX\C)}. For k, m ∈ N with k ≥ m and h ∈ APn(C), 

let

Bk,m,h =
{(

g + W2n(Uk)
)
∩ APn(X) : g ∈ APn(X), gC = h and k(g) = m

}
.

Put B =
⋃
{Bk,m,h : k ≥ m, h ∈ APn(C)}. Then B is a σ-disjoint base for APn(X), see [22, Theo-

rem 4.4]. �
Let X be a locally countable metrizable space. If the set NI (X) is finite, it follows from [10, Proposi-

tion 6.25] that X is a z-space, and then it follows from Theorem 5.21 that AP(X) is a paracompact σ-space, 
hence it is perfectly normal. Moreover, it is known that every perfectly normal space with a σ-disjoint base 
is metrizable. Therefore, we have the following theorem:

Theorem 5.30. For a locally countable regular space X, the following conditions are equivalent:

(1) APn(X) is metrizable for each n ∈ N;
(2) APn(X) is first-countable for each n ∈ N;
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(3) AP2(X) is metrizable;
(4) AP2(X) is first-countable;
(5) the set NI (X) is finite and X is metrizable.

6. Generalized metric properties on free paratopological groups

In this section, we shall consider some generalized metric properties of free paratopological groups.

Definition 6.1. Let P be a family of subsets of a space X. The family P is called a k-network if whenever K
is a compact subset of X and K ⊂ U ∈ τ(X), there is a finite subfamily P ′ ⊂ P such that K ⊂ ∪P ′ ⊂ U .

Theorem 6.2. Let X be a Tychonoff space. Then the following are equivalent:

(1) FP(X) has a countable k-network;
(2) AP(X) has a countable k-network;
(3) X is a countable space with a countable k-network.

Proof. Since X is a T1-space, X−1 is discrete, hence it is easy to see that (1) ⇒ (3) and (2) ⇒ (3). Next 
we shall show that (3) ⇒ (1). The proof of analogous assertion for (3) ⇒ (2) is quite similar.

Suppose that X is a countable space with a countable k-network. Then the product space (X⊕X−1
d ⊕{e})n

has a countable k-network Pn for each n ∈ N. For each n ∈ N, denote in : (X ⊕X−1
d ⊕ {e})n −→ FPn(X)

the canonical mapping, and put Bn = {in(P ) : P ∈ Pn}. Obviously, X is a μ and z-space, and then 
it follows from Theorem 5.8 that for each compact set φ ⊂ FPn(X) there exists a compact subset φ1 ⊂
(X⊕X−1

d ⊕{e})n such that in(φ1) = φ. Then it is easy to see that Bn is a countable k-network in FPn(X)
for each n ∈ N. But every compact φ ⊂ FP(X) is in FPn(X) for some n ∈ N by [14], thus B =

⋃
n∈N

Bn

is a countable k-network in FP(X). �
The proofs of the following two propositions are similar to [7, Proposition 3.4] and [16, Theorem 3.4], 

respectively.

Proposition 6.3. If X is a space, then the mapping

in|i−1
n (FPn(X)\FPn−1(X)) : i−1

n

(
FPn(X) \ FPn−1(X)

)
−→ FPn(X) \ FPn−1(X)

is a homeomorphism.

Proposition 6.4. If X is a space, then the mapping

in|i−1
n (APn(X)\APn−1(X)) : i−1

n

(
APn(X) \ APn−1(X)

)
−→ APn(X) \ APn−1(X)

is an open and closed n! to 1 mapping.

Theorem 6.5. Let X be a metrizable space. Then FP(X) (AP(X)) is σ-closed metrizable and every open 
covering of FP(X) (AP(X)) has a σ-discrete open refinement.

Proof. Let X be a metrizable space and d is metric on X which is compatible with the topology on X. 
Then d can be extended to an invariant metric d̂ on FP(X). It follows from [14, Theorem 3.2] that, for each 
n ∈ N, Cn = FPn(X) \ FPn−1(X) is an open subset of the metric space (FPn(X), d̂|FPn(X)). Hence we
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have

Cn =
∞⋃
i=1

Cn,i,

where each Cn,i is closed in (FPn(X), d̂|FPn(X)). For each n, i ∈ N, Cn,i is closed in (FP(X), d̂), and hence 
it is closed in FP(X). On the other hand, it follows from Proposition 6.3 that each Cn,i is metrizable. 
Therefore, FP(X) is σ-closed metrizable.

Next, we shall show that every open covering of FP(X) has a σ-discrete open refinement. Let U be an 
arbitrary open covering of FP(X). For each n ∈ N, let

Un = {U ∩ Cn : U ∈ U },

then we can take a σ-discrete closed refinement Hn =
⋃∞

i=1 Hn,i in (FPn(X), d̂|FPn(X)) and in (FP(X), d̂). 
Now, for each n ∈ N and H ∈ Hn, choose a set U(H) ∈ U such that H ⊂ U(H). Therefore, for each n, i ∈ N, 
there exists a discrete open family Wn,i = {W (H) : H ∈ Hn,i} in (FP(X), d̂) such that H ⊂ W (H) and 
W (H) ∩ Cn ⊂ U(H) for each H ∈ Hn,i. Let

Gn,i =
{
W (H) ∩ U(H) : H ∈ Hn,i

}
and G =

∞⋃
n,i=1

Gn,i.

Therefore, it is easy to see that G is a σ-discrete open refinement of U .
Applying [14, Theorem 3.3] and Proposition 6.4, the proof of analogous assertion for AP(X) is quite 

similar. �
We don’t know if the free paratopological groups FG(X) over metric spaces are regular. Therefore, we 

have the following question:

Question 6.6. Let X be an uncountable compact metrizable space. Is FG(X) paracompact? In particular, is 
FG([0, 1]) paracompact?

Definition 6.7. ([3, 7.1.B]) Let X be a Tychonoff space. Then FP(X) and AP(X) are called free Tychonoff 
paratopological group and free Abelian Tychonoff paratopological group, respectively.

In [3], A.V. Arhangel’skǐı and M. Tkachenko posed the following three questions:

Question 6.8. ([3, Open Problem 7.4.3]) Let FG(X) be the free Tychonoff paratopological group of a compact 
Hausdorff space X. Is FG(X) the direct limit of a countable family of compact spaces? Is FG(X) σ-compact?

Theorem 6.9. ([3, Theorem 7.5.3]) The following conditions are equivalent for a subset K of the group 
G(X):

(1) K is bounded in G(X);
(2) K is precompact in G(X);
(3) there exist an integer n ∈ ω and bounded subset Y of X such that K ⊂ Gn(X, Y ).

Question 6.10. ([3, Open Problem 7.5.1]) Can Theorem 6.9 be generalized to the free Tychonoff paratopo-
logical group of a Tychonoff space X?
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Question 6.11. ([3, Open Problem 7.5.2]) Is it true that the free Tychonoff paratopological group FG(X) on 
a Tychonoff space X is σ-bounded if and only if X is σ-bounded?

Now, we give negative answers to Questions 6.8, 6.10 and 6.11 by the following example.

Example 6.12. Let X be an arbitrary uncountable compact metrizable space. Then we have the following:
(1) Since −X is a closed discrete uncountable subspace in FP(X) or AP(X), FP(X) and AP(X) are 

not σ-compact and σ-bounded. Of course, it is not the direct limit of a countable family of compact spaces. 
This give a negative answer to Question 6.8.

(2) Obviously, −X ⊂ Gn(X, X) and X is bounded, but −X is not bounded. This give a negative answer 
to Question 6.10.

(3) The space X is bounded and −X is a closed discrete uncountable subspace. Since −X is a closed 
discrete uncountable subspace in FP(X) or AP(X), FP(X) and AP(X) are not σ-bounded. This give a 
negative answer to Question 6.11.

The following two questions are still open.

Question 6.13. Let FG(X) be the Tychonoff free paratopological group of a compact Hausdorff space X. Is 
FG(X) the direct limit of a countable family of compact spaces? Is FG(X) σ-compact?

Question 6.14. Let FG(X) be a Tychonoff free paratopological group of a Tychonoff space X. Are the following 
conditions equivalent:

(1) K is bounded in FG(X);
(2) K is precompact in FG(X);
(3) there exist an integer n ∈ ω and bounded subset Y of X such that K ⊂ Gn(X, Y ).

Lemma 6.15. If K is a precompact subset of FG(X), then Y = supp(K) is bounded in X, and K ⊂ Gn(Y, X)
for some n ∈ N.

Proof. By Theorem 6.9 and the continuity of the identity mapping of FG(X) to G(X), it is easy to see that 
lemma holds. �

By Lemma 6.15, we can obtain the following result which gives a partial answer to Question 6.14.

Theorem 6.16. Let FG(X) be a Tychonoff free paratopological group of a Tychonoff space X. If K is pre-
compact in FG(X) then there exist an integer n ∈ ω and a bounded subset Y of X such that K ⊂ Gn(X, Y ).

Question 6.17. Is it true that a Tychonoff free paratopological group FG(X) on a Tychonoff space X is 
σ-bounded if and only if X is σ-bounded?
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