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In this article we continue the study of R-factorizability in paratopological groups. It
is shown that: (1) all concepts of R-factorizability in paratopological groups coincide;
(2) a Tychonoff paratopological group G is R-factorizable if and only if it is totally
ω-narrow and has property ω-QU ; (3) every subgroup of a T1 paratopological group
G is R-factorizable provided that the topological group G∗ associated to G is a
Lindelöf Σ-space, i.e., G is a totally Lindelöf Σ-space; (4) if Π =

∏
i∈I

Gi is a
product of T1 paratopological groups which are totally Lindelöf Σ-spaces, then
each dense subgroup of Π is R-factorizable. These results answer in the affirmative
several questions posed earlier by M. Sanchis and M. Tkachenko and by S. Lin and
L.-H. Xie.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

A paratopological (semitopological) group is a group with a topology such that multiplication on the
group is jointly (separately) continuous. If in addition inversion on the group is continuous, then it is called
a topological (quasitopological) group.

For every continuous real-valued function f on a compact topological group G, one can find a continuous
homomorphism p : G → L onto a second-countable topological group L and a continuous real-valued
function h on L such that f = h ◦ p (see [7, Example 37]). The conclusion remains valid for pseudocompact
topological groups, a result due to W.W. Comfort and K.A. Ross [3]. These facts motivated the third
listed author to introduce R-factorizable groups in [15] as the topological groups G with the property that
every continuous real-valued function on G can be factorized through a continuous homomorphism onto a
second-countable topological group. The class of R-factorizable groups is unexpectedly wide. For example,
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it contains arbitrary subgroups of σ-compact (and even Lindelöf Σ-) groups, topological products of Lindelöf
Σ-groups, and their dense subgroups [14]. For other properties of this class of topological groups, the reader
is referred to [16,17].

Similarly to the case of topological groups, M. Sanchis and M. Tkachenko introduced in [11] the classes of
Ri-factorizable paratopological groups, for i ∈ {1, 2, 3, 3.5}. The need in the use of four different subscripts
was due to the fact that the classes of T1, Hausdorff, regular and, possibly, completely regular paratopological
groups are all distinct, while T0 topological groups are completely regular. As in the case of topological
groups, the classes of Ri-factorizable paratopological groups are very wide. For example, it was proved
in [11] that every Hausdorff (regular) Lindelöf totally ω-narrow paratopological group is R2-factorizable
(resp., R3-factorizable), and that every subgroup of a Hausdorff (regular) σ-compact paratopological group
is R2-factorizable (resp., R3-factorizable). Also, it was recently shown in [12] that for every continuous
real-valued function f on a feebly compact paratopological group G (no separation requirement on G is
imposed), one can find a continuous homomorphism π : G → H onto a compact metrizable topological
group H and a continuous real-valued function h on H such that f = h ◦ π. As usual, we call a space X

feebly compact if every locally finite family of open sets in X is finite.
The following question was posed by M. Sanchis and M. Tkachenko in [11].

Question 1.1. ([11, Question 5.4]) Suppose that H is a Hausdorff paratopological group such that the
associated topological group H∗ is a Lindelöf Σ-space. Is every subgroup of H R2-factorizable?

We answer this question affirmatively in Theorem 4.8 even if H satisfies only the T1 separation axiom.
For the further study of R-factorizable topological groups, L.-H. Xie and S. Lin generalized the concept of

uniform continuity of real-valued functions on topological groups. Modifying property U defined in [5], they
introduced property ω-U and established that a topological group is R-factorizable if and only if it is ω-narrow
and has property ω-U (see [22, Theorem 4.9]). Recently, with the aim to study open homomorphic images of
Ri-factorizable paratopological groups, L.-H. Xie and S. Lin [23] extended property ω-U to paratopological
groups. They proved that if G is a completely regular R2-factorizable (R3-factorizable) paratopological group
and p : G → K is a continuous open homomorphism onto a paratopological group K satisfying Hs(K) � ω

(Ir(K) � ω), then K is R2-factorizable (resp., R3-factorizable). Here Hs(G) and Ir(G) stand, respectively,
for the Hausdorff number and the index of regularity of the paratopological group G (see the definitions in
[18]). We show in Proposition 3.20 that both restrictions Hs(K) � ω and Ir(K) � ω on the group K in
[23] can be dropped.

It was also proved in [23] that every dense subgroup of a topological product of regular paratopological
groups which are Lindelöf Σ-spaces is R3-factorizable and the following question was posed:

Question 1.2. ([23, Question 6.1]) Are dense subgroups of topological products of Hausdorff σ-compact
paratopological groups R2-factorizable?

We give the positive answer to this question in Corollary 4.15 even in the case when the factors are
T1-spaces.

The article is organized as follows. In Section 3 we modify slightly the original definition of Ri-factor-
izability given in [11] by eliminating the separation restrictions on a paratopological group G (but keeping
these restrictions for second-countable continuous homomorphic images of G). Having a recourse to [21], we
show that all variants of R-factorizability in paratopological groups are equivalent to its weakest form, when
the second-countable continuous homomorphic images of a given paratopological group are not assumed to
satisfy any separation axiom.

Making use of property ω-QU (a form of property ω-U designed for paratopological groups), we char-
acterize Tychonoff R-factorizable paratopological groups. It is proved in Theorem 3.14 that every totally
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ω-narrow paratopological group with property ω-QU is R-factorizable. It follows from Theorem 3.14 that
every quotient of a Tychonoff R-factorizable paratopological group is R-factorizable as well (see Proposi-
tion 3.20). In Theorem 3.21 we establish that a Tychonoff paratopological group G is R-factorizable if and
only if it is totally ω-narrow and has property ω-QU .

Our aim in Section 4 is to study R-factorizability in σ-compact paratopological groups satisfying the T1
separation axiom. In fact, we work in the wider class of paratopological groups which are Lindelöf Σ-spaces
and which are called LΣ-groups for brevity. It is shown in Theorem 4.8 that every subgroup of a totally
LΣ-group satisfying the T1 separation axiom is R-factorizable (the definition of ‘total’ is given in Section 2).
Theorem 4.8 implies that every subgroup of a σ-compact T1 paratopological group is R-factorizable (see
Corollary 4.10). Further, if G =

∏
i∈I Gi is the product of a family of σ-compact paratopological groups

satisfying the T1 separation axiom, then every dense subgroup of G is R-factorizable (see Corollary 4.15).
These results answer Questions 1.1 and 1.2 in the affirmative.

Finally, in Section 5, we formulate several open problems.

2. Notation and preliminary facts

The spaces we consider are not assumed to satisfy any separation axiom, unless the otherwise is stated
explicitly. Further, T3 and T3.5 do not include T1, while ‘regular’ and ‘completely regular’ mean T3 +T1 and
T3.5 + T1, respectively.

By l(X) we denote the Lindelöf number of a space X.
Given a paratopological group G, we denote by ib(G) the minimal cardinal number κ � ω such that for

every neighborhood U of the identity in G, there exists a subset F of G such that |F | � κ and FU = G = UF .
The cardinal ib(G) is called the index of narrowness of the group G [2, Section 5.2]. If ib(G) � ω, we say
that G is ω-narrow.

For a paratopological group G with topology τ , one defines the conjugate topology τ−1 on G by τ−1 =
{U−1: U ∈ τ}. Then G′ = (G, τ−1) is also a paratopological group, and the inversion x → x−1 is a
homeomorphism of G onto G′. The upper bound τ∗ = τ ∨ τ−1 is a topological group topology on G, and we
call G∗ = (G, τ∗) the topological group associated to G. It is easy to see that the family {U∩U−1: e ∈ U ∈ τ}
forms a local base at the neutral element e of the group G∗.

For further references, we collect several basic facts here, some old and some folklore, about the interaction
of G and G∗. A simple verification of them is left to the reader.

Proposition 2.1. Let G be a paratopological group.

(1) If G satisfies the T0 separation axiom, then G∗ is a Hausdorff topological group.
(2) If H is an arbitrary subgroup of G, then H∗ is topologically isomorphic, under the identity mapping, to

a subgroup of G∗.
(3) Let f : G → K be a continuous homomorphism of paratopological groups. Then the mapping f∗ : G∗ →

K∗, which coincides pointwise with f , is a continuous homomorphism of topological groups.
(4) For an arbitrary product Π =

∏
i∈I Gi of paratopological groups, the identity mapping of Π∗ onto∏

i∈I(Gi)∗ is a topological isomorphism of topological groups.

The following important fact was established in [1, Lemma 2.2].

Lemma 2.2. Let G be a paratopological group with topology τ and τ−1 be the conjugate topology on G. Then
the topological group G∗ associated to G is topologically isomorphic to the diagonal Δ = {(x, x): x ∈ G}
considered as a subspace of (G, τ) × (G, τ−1). If G satisfies the T1 separation axiom, then Δ is closed in
(G, τ) × (G, τ−1).
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Let P be a (topological) property. According to [11, Definition 3.1], a paratopological group G is called
totally P if the associated topological group G∗ has property P. Thus we say that a paratopological group
G is totally ω-narrow if the associated topological group G∗ is ω-narrow.

Following [9], we define the symmetry number of a T1 paratopological group G, denoted by Sm(G), as
is the minimum cardinal number κ such that for every neighborhood U of the identity e in G, there exists
a family γ of neighborhoods of e with 1 � |γ| � κ such that

⋂
γ ⊂ U−1. Notice that a T1 paratopological

group G is a topological group iff Sm(G) = 1. It is worth mentioning that the symmetry number was called
weak Hausdorff number in [24].

The next theorem shows the importance of the symmetry number (see [9, Theorem 2.19]):

Theorem 2.3. A T1 paratopological group G is topologically isomorphic to a subgroup of a product of second-
countable T1 paratopological groups iff G is totally ω-narrow and satisfies Sm(G) � ω.

The case of embeddings into products of regular second-countable paratopological groups was considered
in [18]. It was shown in [18, Theorem 3.8] that a regular paratopological group G is topologically isomorphic
to a subgroup of a product of regular second-countable paratopological groups if and only if G is totally
ω-narrow and the index of regularity of G is countable. Recently, I. Sánchez proved in [9] that every regular
totally ω-narrow paratopological group has countable index of regularity. Hence Theorem 3.8 of [18] can be
given the following elegant form:

Theorem 2.4. A regular paratopological group G is topologically isomorphic to a subgroup of a product of
regular second-countable paratopological groups if and only if G is totally ω-narrow.

We will use the following fact established recently in [9, Proposition 2.4] and, independently, in [24,
Corollary 2.4].

Lemma 2.5. Every T1 paratopological group G satisfies Sm(G) � l(G). In particular, if G is Lindelöf, then
the symmetry number of G is countable.

It follows from [10, Proposition 3.8] that every totally ω-narrow paratopological group is ω-balanced,3
while [10, Proposition 3.5] implies that every first-countable totally ω-narrow paratopological group is
second-countable. Therefore, Theorems 2.3 and 2.4 on isomorphic embeddings of paratopological groups
into products can be given the following equivalent form:

Lemma 2.6. Let G be a totally ω-narrow paratopological group.

(1) If G is a T1-space with Sm(G) � ω, then for every open neighborhood U of the identity in G, there
exists a continuous homomorphism π of G onto a second-countable T1 paratopological group H such
that π−1(V ) ⊂ U , for some open neighborhood V of the identity in H.

(2) If G is regular, then for every open neighborhood U of the identity in G, there exists a continuous
homomorphism π of G onto a regular second-countable paratopological group H such that π−1(V ) ⊂ U ,
for some open neighborhood V of the identity in H.

A subset U of a space X is called regular open if U = Int(U). Similarly, a subset F of a space X is called
regular closed if F = Int(F ). Given a space (X, τ), denote by τ ′ the topology on X whose base consists
of regular open subsets of (X, τ). The space (X, τ ′) is said to be the semiregularization of (X, τ) and is

3 A paratopological group G is ω-balanced if for every neighborhood U of the identity e in G, there exists a countable family γ

of open neighborhoods of e in G such that for each x ∈ G one can find V ∈ γ satisfying xV x−1 ⊂ U (see [2, Section 3.4]).
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denoted by Xsr. It is easy to see that τ ′ ⊂ τ and that the spaces (X, τ) and (X, τ ′) have the same regular
open and regular closed subsets.

The operation of semiregularization was defined by M. Stone in [13] and studied by M. Katetov [4].
The following very useful result was proved by Ravsky in [8] (see also [20, Theorem 2.1]):

Theorem 2.7. Let G be an arbitrary paratopological group. Then the space Gsr carrying the same group
structure is a T3 paratopological group. If G is Hausdorff, then Gsr is a regular paratopological group.

3. Characterizing RRR-factorizable paratopological groups

The classes of Ri-factorizable paratopological groups, for i = 1, 2, 3, 3.5, were introduced in [11] as natural
extensions of the class of R-factorizable topological groups. Recently, using property ω-QU , L.-H. Xie and
S. Lin gave some characterizations of R2- and R3-factorizable paratopological groups. In this section we
show that all concepts of Ri-factorizability for paratopological groups coincide, for i = 1, 2, 3, 3.5, when the
separation restrictions on G are eliminated from the definition in [11]. Then we characterize the class of
Tychonoff R-factorizable paratopological groups.

Several results on R-factorizability in paratopological groups show that the original definition of this
concept given in [11] is somewhat restrictive. It turns out that R3-factorizability of a given paratopological
group G can sometimes be established without the requirement that G is regular (see [12, Theorem 5]
and our Corollaries 4.9 and 4.10). Therefore, we prefer to change the definition in [11] by eliminating the
separation restrictions on G:

Definition 3.1. A paratopological group G is R0-factorizable (Ri-factorizable, for i = 1, 2, 3, 3.5) if for
every continuous real-valued function f on G, one can find a continuous homomorphism π : G → H onto
a second-countable paratopological group H satisfying the T0 (resp., Ti + T1) separation axiom and a
continuous real-valued function h on H such that f = h ◦ π. If we do not impose any separation restriction
on H, we obtain the concept of R-factorizability.

In fact, the above definition has already been used in [12, Section 3].

Remark 3.2. From Definition 3.1 one can deduce the following:

(a) Ri-factorizability implies Rj-factorizability, whenever 0 � j < i � 3.5. Also, R0-factorizability implies
R-factorizability.

(b) Clearly, every second-countable regular space is completely regular. Hence a paratopological group is
R3-factorizable iff it is R3.5-factorizable. This is why we shall deal with R3-factorizability rather than
R3.5-factorizability.

(c) We will see in Proposition 3.7 that R2-factorizability implies R3-factorizability. Hence the concepts of
R2-, R3-, and R3.5-factorizability coincide.

(d) According to Proposition 3.4, the classes of R-, R0-, R1-, and R2-factorizable paratopological groups
coincide. Hence Definition 3.1 introduces only one class of paratopological groups.

To show that all concepts of R- and Ri-factorizability (for i = 0, 1, 2, 3) in paratopological groups coincide,
we need the following result proved in [21]:

Theorem 3.3. Let H be an arbitrary paratopological (semitopological) group. Then there exists a continuous
open homomorphism π : H → T2(H) onto a Hausdorff paratopological (semitopological) group T2(H) such
that for every continuous mapping f : H → X to a Hausdorff space X, one can find a continuous mapping
h : T2(H) → X satisfying f = h ◦ π.
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Proposition 3.4. Every R-factorizable paratopological group is R2-factorizable. Hence R-, R0-, R1-, and
R2-factorizability in paratopological groups coincide.

Proof. Let f be a continuous real-valued function on an R-factorizable paratopological group G. Then
we can find a continuous homomorphism p of G onto a second-countable paratopological group H and a
continuous real-valued function g on H such that f = g ◦p. By Theorem 3.3, there exist an open continuous
homomorphism π : H → T2(H) onto a Hausdorff paratopological group T2(H) and a continuous real-valued
function h on T2(H) such that g = h ◦ π. Since the homomorphism π is open, the group T2(H) is also
second-countable. Then ϕ = π ◦ p is a continuous homomorphism of G onto a second-countable Hausdorff
paratopological group and f = h ◦ ϕ. Hence G is R2-factorizable. �

It remains to show that R2-factorizability implies R3-factorizability in paratopological groups. This re-
quires two simple lemmas.

Lemma 3.5. Let f : X → Y be a continuous mapping of X to a regular space Y . Then f remains continuous
as a mapping of the semiregularization Xsr of X to Y .

Proof. Take a point x ∈ X and a neighborhood U of f(x) in Y . Let V be an open neighborhood of f(x) such
that V ⊂ U . Since f is continuous on X, we can find an open neighborhood O of x in X such that f(O) ⊂ V .
Hence f(O) ⊂ V ⊂ U and, consequently, f(IntO) ⊂ f(O) ⊂ U . Since IntO is an open neighborhood of x
in Xsr, we see that f is continuous on Xsr. �
Lemma 3.6. If X is a second-countable space, then so is Xsr.

Proof. Let B be a countable base for X. A direct verification shows that the countable family C =
{IntU : U ∈ B} is a base for Xsr. �
Proposition 3.7. Every R2-factorizable paratopological group G is R3-factorizable.

Proof. Let f be a continuous real-valued function on G. Then one can find a continuous homomorphism
p : G → K onto a Hausdorff paratopological group K of countable weight and a continuous real-valued
function g on K such that f = g ◦ p.

Denote by Ksr the semiregularization of K. Since K is a Hausdorff paratopological group, Theorem 2.7
implies that Ksr is a regular paratopological group. By Lemma 3.6, Ksr has a countable base. Denote by
gsr the function g considered as a mapping of Ksr to the real line. Lemma 3.5 implies that gsr is continuous
on Ksr. Let also iK be the identity isomorphism of K onto Ksr. Since f = gsr ◦ iK ◦ p, we conclude that G

is R3-factorizable. �
Combining Propositions 3.4 and 3.7, we obtain the following result:

Theorem 3.8. Every R-factorizable paratopological group is R3-factorizable. Hence the concepts of R-, R0-,
R1, R2-, and R3-factorizability coincide in the class of paratopological groups.

Also, we find it useful to formulate the following fact obtained by a simple combination of Theorems 2.7,
3.3, and Lemma 3.5:

Proposition 3.9. Let f : G → Y be a continuous mapping of a paratopological group G to a regular space Y .
Then one can find a continuous homomorphism p : G → H of G onto a regular paratopological group H and
a continuous mapping h : H → Y such that f = h ◦ p.
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Theorem 3.8 enables us to avoid the use of the terms ‘Ri-factorizability’ for i = 0, 1, 2, 3, 3.5 by replacing
them to the shorter (but equivalent) term ‘R-factorizability’. Furthermore, Theorem 3.8 shows that all
results on Ri-factorizable paratopological groups proved in [11,12,23] for i = 0, 1, 2, 3 can be equivalently
reformulated for the class of R-factorizable paratopological groups.

The next result is a reformulation of this kind. It is obtained as a combination of [11, Proposition 3.5] and
our Theorem 3.8. We have to mention that the word ‘Tychonoff’ was erroneously omitted in the conditions
on the paratopological group G in Proposition 3.5 of [11].

Proposition 3.10. Every Tychonoff R-factorizable paratopological group G is totally ω-narrow.

According to [23], a real-valued function f on a paratopological group G is called left (right) ω-quasi-
uniformly continuous if, for every ε > 0, there exists a countable family U of open neighborhoods of the
identity in G with the property that for every x ∈ G, there exists U ∈ U such that |f(x) − f(y)| < ε

whenever y ∈ xU (resp., y ∈ Ux).
A real-valued function f on a paratopological group G is ω-quasi-uniformly continuous [23] if f is both

left and right ω-quasi-uniformly continuous.
The following lemma is immediate from the definition of left (right) ω-quasi-uniform continuity (see [23,

Proposition 4.4]).

Lemma 3.11. Let f be a real-valued function defined on a paratopological group G. The following conditions
are equivalent:

(1) f is left (right) ω-quasi-uniformly continuous;
(2) there exists a countable family U of open neighborhoods of the identity in G with the property that for

every point x ∈ G and ε > 0, there exists U ∈ U such that |f(x) − f(y)| < ε whenever y ∈ xU (resp.,
y ∈ Ux).

The next result extends Proposition 3.9 to ω-quasi-uniformly continuous functions.

Lemma 3.12. Let f be a left (right) ω-quasi-uniformly continuous real-valued function on a paratopological
group G. Then one can find a continuous homomorphism p : G → K onto a regular paratopological group
K and a left (right) ω-quasi-uniformly continuous function h on K such that f = h ◦ p.

Proof. Suppose that f is left ω-quasi-uniformly continuous. We do the job in two steps. First, applying
Theorem 3.3, we find a continuous open homomorphism π : G → H of G onto a Hausdorff paratopological
group H and a continuous function g on H such that f = g ◦ π. Since the homomorphism π is open, the
function g is left ω-quasi-uniformly continuous and, hence, continuous.

Let Hsr be the semiregularization of H. Then Hsr is a regular paratopological group, by Theorem 2.7. It
follows from Lemma 3.5 that g remains continuous when considered as a function on Hsr. Denote by i the
identity mapping of H onto Hsr. Then p = i ◦ π is a continuous homomorphism of G onto K = Hsr and
f = h ◦ p, where h : Hsr → R is the function which coincides with g pointwise. It remains to verify that h

is left ω-quasi-uniformly continuous on K.
Let U be a countable family of open neighborhoods of the neutral element in H witnessing that the

function g is left ω-quasi-uniformly continuous. Denote by V the family {IntU : U ∈ U}. If x ∈ H and
ε > 0, there exists U ∈ U such that |g(x) − g(y)| < ε for each y ∈ xU . Since g is continuous, it follows that
|g(x) − g(xz)| � ε for each z ∈ U and, hence, the inequality |h(x) − h(xz)| � ε holds for each z ∈ IntU .
Since IntU ∈ V, we conclude that h is left ω-quasi-uniformly continuous on Hsr = K. The argument in the
case of a right ω-quasi-uniformly continuous function f is similar. �
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The following fact is a sharper and more general version of Lemma 4.13 in [23].

Lemma 3.13. Let G be a totally ω-narrow paratopological group and f : G → R be either a left or right
ω-quasi-uniformly continuous function. Then one can find a continuous homomorphism π : G → L onto a
regular second-countable paratopological group L and a continuous function h : L → R such that f = h ◦ π.

Proof. Suppose that a function f : G → R is left ω-quasi-uniformly continuous. According to Lemma 3.12,
we can assume without loss of generality that G is regular. Indeed, take a continuous homomorphism
p : G → K onto a regular paratopological group K and a left ω-quasi-uniformly continuous function g on
K such that f = g ◦ p. By item (3) of Proposition 2.1, K is totally ω-narrow. Therefore, we can replace G

with K and f with g, respectively.
By Lemma 3.11, there exists a countable family U of open neighborhoods of the identity in G such that for

any ε > 0 and any point x ∈ G, there exists U ∈ U satisfying |f(x)− f(xu)| < ε for all u ∈ U . According to
(2) of Lemma 2.6, one can find a continuous homomorphism πU : G → HU onto a regular second-countable
paratopological group HU such that π−1

U (V ) ⊂ U for some open neighborhood V of the identity in HU . Let
π = ΔU∈UπU be the diagonal product of the family {πU : U ∈ U}. It is clear that L = π(G) is a regular
second-countable paratopological group since the product space

∏
U∈U HU is regular and second-countable.

Claim. f(x1) = f(x2) for all x1, x2 ∈ G satisfying π(x1) = π(x2).

Indeed, assume the contrary and choose x1, x2 ∈ G and ε > 0 such that

π(x1) = π(x2) and
∣∣f(x1) − f(x2)

∣∣ � ε.

By our choice of U , for x2 and ε, there exists U ∈ U such that |f(x2) − f(x2u)| < ε for all u ∈ U , which
is equivalent to f(x2U) ⊂ (f(x2) − ε, f(x2) + ε). Take an open neighborhood V of the identity in HU such
that π−1

U (V ) ⊂ U and put y = πU (x1). Then y = πU (x2) since π(x1) = π(x2), and

x1 ∈ π−1
U (yV ) = x2π

−1
U (V ) ⊂ x2U.

This in turn implies that

f(x1) ∈ f(x2U) ⊂
(
f(x2) − ε, f(x2) + ε

)
,

whence |f(x1) − f(x2)| < ε. This contradicts our choice of the elements x1, x2 and proves the claim.
It follows from the above claim that there exists a real-valued function h on L = π(G) such that f = h◦π.

It remains to prove that h is continuous.
Take any ε > 0, y ∈ π(G), and pick a point x ∈ G such that y = π(x). Since f = h ◦ π, our choice of U

implies that there exists U ∈ U such that

f(xU) ⊂
(
f(x) − ε, f(x) + ε

)
=
(
h(y) − ε, h(y) + ε

)
. (1)

By the definition of πU , there is an open neighborhood V of the identity in HU such that π−1
U (V ) ⊂ U . Put

O = π(G) ∩
(
V ×

∏
U ′∈U\{U}

HU ′

)
.

Note that O is an open neighborhood of the identity in π(G) and π−1(O) = π−1
U (V ) ⊂ U . Therefore, it

follows from (1) that

h(yO) ⊂ f
(
π−1(yO)

)
= f

(
xπ−1(O)

)
⊂ f(xU) ⊂

(
h(y) − ε, h(y) + ε

)
.
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Hence the function h is continuous. This completes the proof in the case when f is left ω-quasi-uniformly
continuous. The argument in the case of a right ω-quasi-uniformly continuous function f is similar. �

Following [23] we say that a paratopological group G has property ω-QU if all continuous real-valued
functions on G are ω-quasi-uniformly continuous. The next theorem follows directly from Lemma 3.13.

Theorem 3.14. Every totally ω-narrow paratopological group with property ω-QU is R-factorizable.

Corollary 3.15. Every totally ω-narrow Lindelöf paratopological group G is R-factorizable.

Proof. By [23, Theorem 4.10], every Lindelöf paratopological group has property ω-QU . Hence the conclu-
sion follows from Theorem 3.14. �
Corollary 3.16. Every paratopological group with a countable network is R-factorizable.

Lemma 3.17. Every R-factorizable paratopological group has property ω-QU.

Proof. Let f : G → R be a continuous function on an R-factorizable paratopological group G. Then we
can find a continuous homomorphism π : G → K onto a second-countable paratopological group K and a
continuous function h on K such that f = h ◦ π. Let B be a countable local base at the identity of K. Put
U = {π−1(U): U ∈ B}. One can easily verify that U is a countable family of open neighborhoods of the
identity in G which has the property that for every point x ∈ G and every ε > 0, there exists an element
U ∈ U such that |f(x)− f(xu)| < ε and |f(x)− f(ux)| < ε for each u ∈ U . Hence Lemma 3.11 implies that
f is ω-quasi-uniformly continuous. So G has property ω-QU . �

In fact, we can apply Lemma 3.17 to reformulate Theorem 3.14 as follows:

Theorem 3.18. A totally ω-narrow paratopological group G is R-factorizable if and only if it has property
ω-QU.

It is still an open problem whether every quotient of an R-factorizable paratopological group is
R-factorizable (see [11, Problem 5.2]). We solve this problem in the classes of totally ω-narrow and Ty-
chonoff R-factorizable paratopological groups.

Proposition 3.19. Every quotient of a totally ω-narrow R-factorizable paratopological group G is R-factor-
izable.

Proof. Lemma 3.17 implies that G has property ω-QU . By [23, Lemma 5.2], property ω-QU is preserved
under taking arbitrary quotients. Item (3) of Proposition 2.1 implies that total ω-narrowness is preserved by
continuous surjective homomorphisms as well. Hence the required conclusion follows from Theorem 3.14. �
Proposition 3.20. Every quotient of a Tychonoff R-factorizable paratopological group G is R-factorizable.

Proof. It follows from Proposition 3.10 that the group G is totally ω-narrow. Hence the R-factorizability of
G follows from Proposition 3.19. �

Making use of property ω-QU we characterize Tychonoff R-factorizable paratopological groups in the
theorem below.
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Theorem 3.21. A Tychonoff paratopological group G is R-factorizable if and only if it is totally ω-narrow
and has property ω-QU.

Proof. The sufficiency follows from Theorem 3.14. Conversely, suppose that G is a Tychonoff R-factorizable
paratopological group. Then G is totally ω-narrow by Proposition 3.10, and Lemma 3.17 implies that G has
property ω-QU . �
Remark 3.22. Let S be the Sorgenfrey line and Z the group of integers, which is a closed subgroup of S.
Then the quotient paratopological group TSor = S/Z is algebraically the additive circle group whose local
base at the neutral element 0̄ is generated by the half-open intervals {[0, 1

n ): n ∈ N+}. The paratopological
group TSor is regular, hereditarily Lindelöf, hereditarily separable, but it is not totally ω-narrow. Hence
Theorem 3.21 implies that TSor is not R-factorizable (see also [11, Example 3.3]). Clearly, the Sorgenfrey
line S has the same properties, but TSor is, in addition, precompact. The latter means that the group TSor
can be covered by finitely many translates of any neighborhood of the identity. It should be noted, however,
that precompact topological groups are R-factorizable [2, Corollary 8.1.17].

4. RRR-factorizability in totally LΣ-groups

In this section we consider R-factorizability in σ-compact and totally LΣ-groups satisfying the T1 sepa-
ration axiom.

The following lemma plays an important role here. It extends [10, Corollary 3.13] to the case of T1
paratopological groups.

Lemma 4.1. Let G be a Lindelöf totally ω-narrow T1 paratopological group with neutral element e. Then, for
every Gδ-set P in G with e ∈ P , there exists a closed invariant subgroup N of G such that N ⊂ P and the
quotient paratopological group G/N has countable pseudocharacter.

Proof. Let P =
⋂

i∈ω Ui, where each Ui is an open neighborhood of e in G. Since G is Lindelöf, it follows
from Lemma 2.5 that Sm(G) � ω. Then item (1) of Lemma 2.6 implies that for each i ∈ ω, there exists
a continuous homomorphism πi : G → Hi onto a second-countable T1 paratopological group Hi such that
π−1
i (Vi) ⊂ Ui, for some open neighborhood Vi of the neutral element in Hi.
Let π = Δi∈ωπi be the diagonal product of the family {πi: i ∈ ω}. Put N = π−1(e′), where e′ is the

neutral element of H =
∏

i∈ω Hi. Clearly, N is closed in G and

N =
⋂
i∈ω

π−1
i (ei) ⊂

⋂
i∈ω

π−1
i (Vi) ⊂

⋂
i∈ω

Ui = P,

where ei is the neutral element of Hi for each i ∈ ω. It is easy to see that the quotient paratopological group
G/N is T1 and has countable pseudocharacter, since the canonical one-to-one mapping id : G/N → π(G) is
continuous and the paratopological groups H and π(G) ⊂ H are T1-spaces of countable weight. �

In what follows we work with a paratopological group G such that either G or the associated topological
group G∗ is a Lindelöf Σ-space. Usually the Lindelöf Σ-spaces are assumed to be Tychonoff (see [2, Sec-
tion 5.3]). This is why we consider only paratopological groups satisfying the T1 separation axiom in this
section—then the topological group G∗ associated to G is Tychonoff and, by Lemma 2.2, is topologically
isomorphic to a closed subgroup of G×G′. However, one can use the original definition of Σ-spaces given
by Nagami in [6], where the spaces are assumed to be Hausdorff.

An equivalent reformulation of the definition of Σ-spaces in [6] is as follows. It is said that X is a Σ-space
if there are two coverings of X by closed sets, say, C and F such that C is σ-locally finite, F consists of
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countably compact sets, and for every F ∈ F and every open neighborhood U of F in X, one can find
C ∈ C satisfying F ⊂ C ⊂ U . Needless to say that in the class of regular Lindelöf spaces, the Σ-spaces in
the sense of Nagami are exactly the Lindelöf Σ-spaces considered in [2]. Hence we can deal with Lindelöf
Σ-spaces which satisfy the Hausdorff separation axiom only.

It is clear that, for a Lindelöf Σ-space X, the corresponding covering C of X must be countable and the
elements of the covering F must be compact. Similarly to [6, Theorem 3.13], one can show that any product
of countably many Lindelöf Σ-spaces is again a Lindelöf Σ-space.

A space X is called ω-cellular or, in symbols, celω(X) � ω, if every family γ of Gδ-sets in X contains a
countable subfamily λ such that the

⋃
λ is dense in

⋃
γ. We start with a lemma that generalizes a similar

result proved in [10, Lemma 4.1] for Hausdorff totally LΣ-groups. Let us recall that the term ‘LΣ-group’
refers to a paratopological group.

Lemma 4.2. Let H be a totally LΣ-group satisfying the T1 separation axiom. Then:

(1) the space H is ω-cellular ;
(2) if γ is a countable family of closed Gδ-sets in H, then there exists a closed invariant subgroup N of

H such that the quotient paratopological group H/N has a countable network and F = π−1(π(F )), for
each F ∈ γ, where π : H → H/N is the quotient homomorphism.

Proof. Since H is T1 and a totally LΣ-group, it follows from [2, Theorem 5.3.18] that the associated
topological group H∗ is Tychonoff and ω-cellular. Hence H is ω-cellular as a continuous image of H∗.

It remains to deduce (2) of the lemma. Let N be the family of closed invariant subgroups of H such
that for each N ∈ N , the quotient paratopological group H/N has countable pseudocharacter. One easily
verifies that the family N is closed under countable intersections. Therefore, it suffices to prove (2) in the
special case when γ contains a single element, say, F .

For every x ∈ F , x−1F is a Gδ-set in H which contains the identity e of H, so by Lemma 4.1, we
can find an element Nx ∈ N such that Nx ⊂ x−1F . The family {xNx: x ∈ F} covers F , and since the
space H is ω-cellular, there exists a countable set C ⊂ F such that B =

⋃
x∈C xNx is dense in F . Then

N =
⋂

x∈C Nx ∈ N . We claim that F = π−1(π(F )), where π : H → H/N is the quotient homomorphism.
Indeed, take any x ∈ C. Since Nx is a subgroup of H and N ⊂ Nx, we have that Nx = π−1(π(Nx)) and,

hence, xNx = π−1(π(xNx)). In its turn, this implies that B = π−1(π(B)). Since the mapping π is open and
B is dense in the closed set F , it follows that F = π−1(π(F )).

Finally, we have to verify that the quotient paratopological group H/N has a countable network. To this
end, consider the quotient topological group H∗/N∗. Clearly, the identity isomorphism ϕ : H∗/N∗ → H/N is
continuous. The pseudocharacter of H/N is countable by our choice of N , so the pseudocharacter of H∗/N∗

is countable as well. Since H∗ and H∗/N∗ are Lindelöf Σ-spaces, it follows from [2, Corollary 5.3.25] that
H∗/N∗ has a countable network. Thus H/N has a countable network as a continuous image of H∗/N∗. �

The following lemma is evident.

Lemma 4.3. Every T3-space with a countable network has a countable closed network.

According to [10, Theorem 4.2], the closure of the union of an arbitrary family of Gδ-sets in a regular
LΣ-group is again a Gδ-set. The same conclusion is valid for Hausdorff σ-compact paratopological groups
[10, Theorem 4.4]. The conclusion of our next result is weaker, but it holds for all LΣ-groups which are
T1-spaces:

Proposition 4.4. Let H be a totally LΣ-group satisfying the T1 separation axiom. Then the closure of every
open subset of H is a Gδ-set.
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Proof. Let N be the family of closed invariant subgroups N of H such that the quotient paratopologi-
cal group H/N has countable pseudocharacter. Since H is a totally LΣ-group, it is Lindelöf and totally
ω-narrow. Take a non-empty open set U in H. For any x ∈ U , x−1U is an open set in H containing
the identity of H. Making use of Lemma 4.1, we can find a closed invariant subgroup Nx ∈ N such that
Nx ⊂ x−1U . Clearly, the family {xNx: x ∈ U} covers U . According to (1) of Lemma 4.2, one can find a
countable subset C ⊂ U such that B =

⋃
x∈C xNx is dense in U . Since xNx is a closed Gδ-set in H for each

x ∈ U , it follows from (2) of Lemma 4.2 that there exists a closed invariant subgroup N of H such that the
quotient paratopological group H/N has a countable network and xNx = π−1(π(xNx)), for each x ∈ C,
where π : H → H/N is the quotient homomorphism. Thus B = π−1(π(B)) and π(B) is dense π(U). Since
π is an open mapping, the equalities

U = B = π−1
(
π(B)

)
= π−1(π(B)

)
= π−1(π(U)

)
are valid. Clearly π(U) is a regular closed set in H/N . Hence π(U) is closed in (H/N)sr, where (H/N)sr
is the semiregularization of the paratopological group H/N . From Theorem 2.7 it follows that (H/N)sr is
a T3-space. Hence Lemma 4.3 implies that (H/N)sr has a countable closed network as a continuous image
of H/N . Thus π(U) is a Gδ-set in (H/N)sr and in H/N . Hence U = π−1(π(U)) is a Gδ-set in H. This
completes the proof. �

It was shown in [11, Proposition 2.6] that every regular LΣ-group G is perfectly κ-normal, i.e., the closure
of every open subset of G is a zero-set.4 Let us show that ‘regular’ can be weakened to ‘Hausdorff’ in this
result. First we need a simple lemma.

Lemma 4.5. Let f : X → Y be a continuous onto mapping, where X is Hausdorff and Y is regular. If X is
a Lindelöf Σ-space, then so is Y .

Proof. Let families CX and FX of closed subsets of X witness that X is a Lindelöf Σ-space. Then the family
CX is countable and FX consists of compact sets. We claim that the families

CY =
{
f(C): C ∈ CX

}
and FY =

{
f(F ): F ∈ FX

}
witness that Y is a Lindelöf Σ-space. Indeed, take an arbitrary element F ∈ FX and let U be an open
neighborhood of f(F ) in Y . Since f(F ) is compact and Y is regular, there exists an open neighborhood V

of f(F ) in Y such that V ⊂ U . Take an element C ∈ C such that F ⊂ C ⊂ f−1(V ). Then f(C) ∈ CY and
f(F ) ⊂ f(C) ⊂ f(C) ⊂ V ⊂ U . Since the family CY is countable, this proves our claim and the lemma. �
Proposition 4.6. Every Hausdorff LΣ-group G is perfectly κ-normal.

Proof. Let Gsr be the semiregularization of G and i : G → Gsr be the identity mapping. By Theorem 2.7,
Gsr is a regular paratopological group. It follows from the definition of semiregularization that i(O) = i(O),
for every open set O ⊂ G. In other words, the families of regular closed sets in G and Gsr coincide. Lemma 4.5
implies that Gsr is a regular Lindelöf Σ-space, so Gsr is perfectly κ-normal by [11, Proposition 2.6]. Take a
continuous real-valued function g on Gsr such that i(O) = g−1(0). Then the continuous real-valued function
f = g ◦ i on G satisfies O = f−1(0). Hence G is perfectly κ-normal. �

Notice that the above result complements Proposition 4.4 in the case of Hausdorff paratopological groups.
For the proof of Theorem 4.8 we need the following auxiliary fact (see [11, Lemma 3.15]).

4 A subset F of a space X is called a zero-set if there exists a continuous real-valued function f on X such that F = f−1(0).
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Lemma 4.7. Let D be a dense subspace of a space X, and suppose that f : D → Y and ϕ : X → Z are
continuous mappings, where ϕ is open and the space Y is regular. Suppose also that B is a base for Y

such that f−1(V ) = ϕ−1(ϕ(f−1(V ))), for each V ∈ B (the closures are taken in X). Then there exists a
continuous mapping g : ϕ(D) → Y such that f = g ◦ ϕ�D.

The following theorem is one of the main results in this section. It answers Question 1.1 affirmatively
and shows even more:

Theorem 4.8. Every subgroup H of a totally LΣ-group G satisfying the T1 separation axiom is R-factorizable.

Proof. By our assumption, the associated topological group G∗ is a Lindelöf Σ-space. The closure of H

in G∗, say, F is also a Lindelöf Σ-space. Then F , considered as a subgroup of G, is a paratopological
group. We denote it by K. From (2) of Proposition 2.1 it follows that F is topologically isomorphic to the
topological group K∗ associated to K. Thus K is a totally LΣ-group. Clearly, H is dense in K. Therefore,
we can assume without loss of generality that H is dense in G.

Let f be a continuous real-valued function on H. Denote by B a countable open base for the real line.
Since f is continuous, for every V ∈ B, there exists an open set UV in G such that f−1(V ) = UV ∩ H.
By Proposition 4.4, UV is a Gδ-set in G, so we can apply (2) of Lemma 4.2 to find a closed invariant
subgroup N of G such that the quotient paratopological group G/N has a countable network and the
quotient homomorphism π : G → G/N satisfies UV = π−1(π(UV )), for each V ∈ B. Since H is dense in G,
we have that UV = f−1(V ) for each V ∈ B. Therefore, by Lemma 4.7 (with D = H, X = G, Y = R,
Z = G/N , and ϕ = π), there exists a continuous real-valued function g on π(H) satisfying f = g ◦ π�H .

Clearly, the subgroup π(H) of G/N has a countable network. Hence π(H) is R-factorizable by Corol-
lary 3.16. So we can find a continuous homomorphism p : π(H) → L onto a second-countable paratopological
group L and a continuous real-valued function h on L such that g = h ◦ p. Then ϕ = p ◦π�H is a continuous
homomorphism of H onto L and f = h ◦ ϕ. This proves that H is R-factorizable. �

Let H be a Hausdorff LΣ-group. According to [11, Corollary 2.3(b)], H∗ is a Lindelöf Σ-group, i.e.,
every Hausdorff LΣ-group is a totally LΣ-group. Hence the following corollary to Theorem 4.8 extends
Theorem 3.13 of [11] to Hausdorff paratopological groups.

Corollary 4.9. Suppose that H is a Hausdorff LΣ-group. Then every subgroup of H is R-factorizable.

The next result generalizes [11, Proposition 3.16] by weakening ‘regular’ to ‘T1’.

Corollary 4.10. Every subgroup of a σ-compact T1 paratopological group is R-factorizable.

Proof. According to Theorem 4.8, it suffices to show that every σ-compact paratopological group G

satisfying the T1 separation axiom is totally σ-compact and, hence, a totally LΣ-group. For Hausdorff
paratopological groups, this fact was established in [11, Corollary 2.3(a)]. We show here that a similar
argument works in the case when ‘Hausdorff’ is weakened to ‘T1’.

Let τ be the topology of G. Denote by G′ the paratopological group conjugated to G, i.e., G′ = (G, τ−1),
where τ−1 = {U−1: U ∈ τ}. Then the inversion in G is a homeomorphism of G onto G′. Hence G′ and
the product G × G′ are also σ-compact T1 paratopological groups. By Lemma 2.2, the topological group
G∗ associated to G is topologically isomorphic to the diagonal Δ = {(x, x) ∈ G × G′: x ∈ G} which is
closed in G × G′. This implies that G∗ ∼= Δ is a σ-compact Hausdorff topological group. So G is totally
σ-compact. �
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It is tempting to extend Corollary 4.10 to subgroups of paratopological groups satisfying the T0 separation
axiom:

Question 4.11. Is every subgroup of a σ-compact T0 paratopological group R-factorizable? What about
dense subgroups?

We answer Question 4.11 affirmatively in the special case when the domain of a real-valued function is
the whole group, without any separation restrictions on the group.

Corollary 4.12. Every σ-compact paratopological group is R-factorizable.

Proof. Let G be a σ-compact paratopological group and f a continuous real-valued function on G. By
Theorem 3.3, we can find a continuous homomorphism π : G → H onto a Hausdorff paratopological group
H and a continuous real-valued function g on H such that f = g ◦ π. Clearly, H is σ-compact. Then H is
R-factorizable according to Corollary 4.10, so there exist a continuous homomorphism p : H → K onto a
second-countable paratopological group K and a continuous real-valued function h on K such that g = h◦p.
Hence ϕ = p ◦ π is a continuous homomorphism of G onto K which satisfies f = h ◦ ϕ. This implies that G

is R-factorizable. �
Our next step is to extend Theorem 4.8 to dense subgroups of arbitrary products of totally LΣ-groups

satisfying the T1 separation axiom.

Corollary 4.13. Let G =
∏

i∈I Gi be the product of a family of T1 paratopological groups. If each factor Gi

is a totally LΣ-group, then every dense subgroup of G is R-factorizable.

Proof. Let S be a dense subgroup of G and f a continuous real-valued function on S. First we prove that
G =

∏
i∈I Gi is ω-cellular. By (4) of Proposition 2.1, we can identify the topological groups G∗ and

∏
i∈I G

∗
i .

Since the topological group
∏

i∈F G∗
i is a Lindelöf Σ-space (hence ω-cellular), for each finite set F ⊂ I, it

follows from [2, Theorem 5.3.18] that
∏

i∈F G∗
i is ω-cellular. Hence [2, Proposition 1.6.22] implies that the

product space G∗ =
∏

i∈I G
∗
i is ω-cellular, and so is G as a continuous image of G∗.

Since S is dense in G, it follows from [2, Theorem 1.7.7] that there exist a countable set J ⊂ I and a
continuous function g : pJ(S) → R such that f = g ◦ pJ�S , where pJ : G →

∏
i∈J Gi is the projection. It is

well known that the product of a countable family of Lindelöf Σ-spaces is a Lindelöf Σ-space. Therefore,∏
i∈J Gi is a totally LΣ-group. Hence Theorem 4.8 implies that one can find a continuous homomorphism

π : pJ(S) → H onto a second-countable paratopological group H and a continuous function h : H → R
such that g = h ◦ π. Then ϕ = π ◦ pJ�S is a continuous homomorphism of S onto H, and f = h ◦ ϕ. This
completes the proof. �

The next fact is immediate from Corollary 4.13.

Corollary 4.14. Let G =
∏

i∈I Gi be the product of a family of Hausdorff paratopological LΣ-groups. Then
every dense subgroup of G is R-factorizable.

The result below answers Question 1.2 affirmatively.

Corollary 4.15. Let G =
∏

i∈I Gi be the product of a family of T1 paratopological groups. If each factor Gi

is σ-compact, then every dense subgroup of G is R-factorizable.
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5. Open problems

We formulate here several open problems whose solutions seem to require new methods, distinct from
those employed in this article.

The first problem arises in an attempt to extend Proposition 3.10 to regular paratopological groups:

Question 5.1. Is every regular R-factorizable paratopological group totally ω-narrow?

In view of Theorem 2.4, the above question is equivalent to asking whether every regular R-factorizable
paratopological group is Tychonoff. It is worth mentioning that there exist R-factorizable paratopological
groups satisfying the T0 separation axiom which fail to be even ω-narrow.

Our second problem repeats the second part of [11, Problem 5.1].

Question 5.2. Let G be a (regular) paratopological group such that the associated topological group G∗ is
R-factorizable. Is G then R-factorizable?

We have already mentioned that if H is a Hausdorff LΣ-group, then the associated topological group
H∗ is a Lindelöf Σ-space. We do not know whether the converse is valid, unless H is regular:

Question 5.3. Suppose that H is a Hausdorff paratopological group such that the associated topological
group H∗ is a Lindelöf Σ-space. Is H a Lindelöf Σ-space?

Let H be a Hausdorff σ-compact paratopological group. By [10, Theorem 4.4], for every family γ of
Gδ-sets in H,

⋃
γ is again a Gδ-set. It is not clear if this conclusion remains valid for Hausdorff LΣ-groups:

Question 5.4. Let H be a Hausdorff LΣ-group and γ a family of Gδ-sets in H. Is
⋃
γ a Gδ-set in H?

In fact, the above problem is equivalent to the following one (see [19, Problem 4.3]):

Question 5.5. Let H be a Hausdorff paratopological group with a countable network. Is every closed subset
of H a Gδ-set?
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