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Abstract. Star operations are defined by R. E. Hodel in 1994. In this
paper some relations among star operators, sequential closure operators
and closure operators are discussed. Moreover, we introduce an induced
topology by a family of subsets of a space, and some interesting results
about star operators are established by the induced topology.

1. Introduction

Weak bases are an important concept in generalized metric spaces. F. Siwiec
[9] proved that a Hausdorff space is first-countable if and only if it is a Fréchet,
weakly first-countable space. R. E. Hodel [5] introduced the star operator on
a weakly first-countable space and also showed the result of F. Siwiec by using
the star operator. Recently, Woo Chorl Hong [6] proved that the star operator
and the sequential closure operator on a weakly first-countable space are the
same and get the result of F. Siwiec and R. E. Hodel by a different method
from R. E. Hodel.

It is well known that the closure operator and sequential closure operator
are defined in an arbitrary topological space. Therefore, we shall consider a
star operator in an arbitrary topological space, and also discuss some relations
among closure operators, sequential closure operators and star operators. In
particular, the sequential closure operators are equivalent to the star operators
under some conditions.

Let X be a topological space, and P a family of subsets of X . The family
P is called a standard network for X if it satisfies the following conditions:

(1) P = ∪x∈XPx;
(2) Px is a network at x in X for each x ∈ X , i.e., if x ∈ U and U is open

in X , then x ∈ P ⊂ U for some P ∈ Px;
(3) if U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.
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Definition 1.1. Let A ⊂ X . Put

[A] = {x ∈ X : there is a sequence in A converging to x}.

The operation [•] : P(X) → P(X) is called a sequential closure operator [3] on
the space X .

If P = ∪x∈XPx is a standard network for X , for each A ⊂ X put

(A)∗P = {x ∈ X : P ∩ A 6= ∅ for each P ∈ Px}.

The operation (•)∗P : P(X) → P(X) is called a star operator [5] on the space
X .

It is obvious that (A)∗P , [A] ⊂ A.

Question 1.1. How to characterize a standard network P for a space X such
that (A)∗P = A, or (A)∗P = [A] for each A ⊂ X?

In this paper, certain relations between (A)∗P and [A] are discussed.

2. Star operators

Let X be a space, x ∈ X , and P ⊂ X . P is said to be a sequential neighbor-

hood at x in X if each sequence converging to x is eventually in P . P is said
to be sequentially open if P is a sequential neighborhood at x in X for each
x ∈ P . X is called a sequential space [3] if each sequentially open subset in X

is open.

Definition 2.1. Let P be a standard network of a space X . P is called an
sn-network [7] for X if each element of Px is a sequential neighborhood at x in
X . P is called a weak base [1] for X if G ⊂ X is open in X whenever for each
x ∈ G, P ⊂ G for some P ∈ Px.

A space is called weakly first-countable [1] (respectively, sn-first-countable)
if X has a weak base (respectively, an sn-network) P such that each Px is
countable.

Every weakly first-countable space is sequential [9].

Lemma 2.1 ([7]). Let X be a space, and P a family of subsets of X.

(1) If P is a weak base for X, it is an sn-network.

(2) If X is a sequential space and P is an sn-network for X, P is a weak

base.

Theorem 2.1. Let X be a space, and P a standard network for X. Then

(1) P is a neighborhood base for X if and only if (A)∗P = A for each A ⊂ X.

(2) P is an sn-network for X if and only if [A] ⊂ (A)∗P for each A ⊂ X.

Proof. Put P = ∪x∈XPx.
(1) If Px is a neighborhood base at x in X for each x ∈ X , it is obvious

that (A)∗P = A for each A ⊂ X . Conversely, for each x ∈ X and P ∈ Px, since
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P ∩ (X − P ) = ∅, x 6∈ (X − P )∗P = X − P = X − P ◦, thus x ∈ P ◦. Hence, Px

is a neighborhood base at x in X .
(2) If there is x ∈ X such that Px is not an sn-network at x in X , then

P is not a sequential neighborhood at x in X for some P ∈ Px, thus there is
a sequence {xn} in X − P converging to x, hence x ∈ [X − P ] ⊂ (X − P )∗P ,
so P ∩ (X − P ) 6= ∅, which is a contradiction. Conversely, suppose that Px is
an sn-network at x in X for each x ∈ X . Let A ⊂ X . If x ∈ [A], there is a
sequence {xn} in A converging to x. Let P ∈ Px, then the sequence {xn} is
eventually in P , and thus P ∩ A 6= ∅, which follows that x ∈ (A)∗P . Therefore,
[A] ⊂ (A)∗P . �

Theorem 2.2. Let P be a standard network for a space X. Then (A)∗P ⊂ [A]
for each A ⊂ X if and only if there is Px ∈ Px such that Px ⊂ U whenever U

is a sequential neighborhood at a point x in X.

Proof. Suppose that (A)∗P ⊂ [A] for each A ⊂ X . If there are x ∈ X and a
sequential neighborhood U at x in X such that P 6⊂ U for each P ∈ Px, then
it can take a point x(P ) ∈ P − U for each P ∈ Px. Put A = {x(P ) : P ∈ P}.
Then x ∈ (A)∗P ⊂ [A], and hence there is a sequence {xn} in A such that
xn → x. Then the {xn} is eventually in U , which is a contradiction.

Conversely, let A ⊂ X . If there is x ∈ (A)∗P − [A], then X−A is a sequential
neighborhood at x in X , thus Px ⊂ X −A for some Px ∈ Px, and Px ∩A = ∅,
which is a contradiction. �

Corollary 2.1. If a space X has a standard network P with (A)∗P = [A] for
each A ⊂ X, then P is a weak base for X if and only if X is sequential.

Proof. Since (A)∗P = [A] for each A ⊂ X , P is an sn-network by Theorem 2.1.
If X is sequential, then P is a weak base for X by Lemma 2.1. Conversely,
let P be a weak base for X . If a subset U of X is a sequential neighborhood
at x in X for each x ∈ U , then U is open by Theorem 2.2 and Definition 2.1.
Hence, X is sequential. �

Theorem 2.3. Let P = ∪x∈XPx be a standard network for a space X such

that each Px is countable. Then (A)∗P ⊂ [A] for each A ⊂ X.

Proof. Let A ⊂ X . If x ∈ (A)∗P , there is a decreasing sequence {Pn}n∈N ⊂ Px

such that {Pn}n∈N is a network at x in X . Take a sequence {xn}n∈N with each
xn ∈ Pn ∩ A. Then the sequence {xn} converges to x, so x ∈ [A]. Therefore,
(A)∗P ⊂ [A]. �

If P is an sn-network for X such that each Px is countable, then (A)∗P = [A]
for each A ⊂ X by Theorems 2.1 and 2.3, which is shown for weakly first-
countable spaces by W. C. Hong [6]. But, the converse of Theorem 2.3 is not
hold.

Recall that a space X is called a Fréchet space [4] if x ∈ A ⊂ X there is
a sequence in A which converges to x. Every first-countable space is Fréchet,
and every Fréchet space is sequential.
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If P is a standard network for a Fréchet space X , then (A)∗P ⊂ A = [A] for
each A ⊂ X .

Example 2.1. The sequential fan Sω is defined as follows. Let Tn be a sequence
converging to an 6∈ Tn for each n ∈ N. Put T0 = {an : n ∈ N}. Let T be the
topological sum of {Tn ∪ {an} : n ∈ N}.

Sω = {s} ∪ (
⋃

{Tn : n ∈ N})

is a quotient space obtained from the T by identifying T0 to a point s.
Let X be the sequential fan Sω. Then X is a non-first-countable, Fréchet

space. If P is a base for X , then (A)∗P = A = [A] for each A ⊂ X .

3. The induced topology and Fréchet spaces

In this section, we shall discuss some conditions in which (A)∗P ⊂ [A] for
each A ⊂ X . A new topology τP from a topology τ on a space X is induced
by a standard network P . Some relations of sequential neighborhoods and
neighborhoods in τ or τP are obtained.

Let P be a standard network for a topological space (X, τ). Set P =
∪x∈XPx, and put

τP = {U ⊂ X : there is P ∈ Px such that P ⊂ U for each x ∈ U}.

It is easy to see that
(1) τP is a topology on X ;
(2) τ ⊂ τP ;
(3) P is always a weak base for (X, τP);
(4) P is a weak base for (X, τ) if and only if τ = τP .

The τP is called a topology induced by P .

Lemma 3.1 ([8, Lemma 1.4.7]). A space X is Fréchet if and only if each

sequential neighborhood at x in X is a neighborhood at x in X for each x ∈ X.

Each sequential neighborhood at x in (X, τ) is a sequential neighborhood at
x in τP for each x ∈ X because τ ⊂ τP . Consider the following conditions.

(F): Each sequential neighborhood at x in (X, τ) is a neighborhood at x in
τP for each x ∈ X .

(G): Each sequential neighborhood at x in τP is a sequential neighborhood
at x in τ for each x ∈ X .

By Theorem 2.2, (F) =⇒ (A)∗P ⊂ [A] for each A ⊂ X .

Theorem 3.1. If (X, τ) or (X, τP) is Fréchet, then X has the (F).

Proof. If (X, τ) is Fréchet and U is a sequential neighborhood at x ∈ X in
(X, τ), U is a neighborhood at x in τ by Lemma 3.1, then U is a neighborhood
at x in τP by τ ⊂ τP . If (X, τP) is Fréchet and U is a sequential neighborhood at
x in (X, τ), U is a sequential neighborhood at x in τP , then U is a neighborhood
at x in τP by Lemma 3.1. �
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Let (X, τ) be a space. Since P is a weak base for (X, τP), P is always an sn-
network for (X, τP) by Lemma 2.1. Put P = ∪x∈XPx, where each Px = {{x}}
for each x ∈ X . Then P is a standard network for X , τP is a discrete topology
on X , and X has the (F). But, X has not the (G) if X is the unit closed interval
with the usual topology. Hence, (F)6;(G).

Lemma 3.2. Let P be a standard network for X. Consider the following

conditions:
(1) P is an sn-network for (X, τ);
(2) X has the (G), i.e., each sequential neighborhood at x in τP is a se-

quential neighborhood at x in τ for each x ∈ X ;
(3) Each neighborhood at x in τP is a sequential neighborhood at x in τ for

each x ∈ X.

Then (1) ⇔ (2) ⇒ (3), and (3) ⇒ (1) if X is Hausdorff.

Proof. (1) ⇒ (2) Let P be an sn-network for (X, τ). For each x ∈ X , let U

be a sequential neighborhood at x in τP . Let S be a sequence converging to x

in τ , and x ∈ V ∈ τP . Then Px ⊂ V for some Px ∈ Px, S is eventually in Px

because Px is a sequential neighborhood at x in τ , S is eventually in V , and
S is a convergent sequence in τP . Thus S is eventually in U . Hence U is a
sequential neighborhood at x in τ .

(2) ⇒ (1) Since P is always a weak base for (X, τP), P is an sn-network
for (X, τP) by Lemma 2.1. Then P is an sn-network for (X, τ) by (2).

(2) ⇒ (3) is obvious. Next, show that (3) ⇒ (1) if X is Hausdorff. Let
P = ∪x∈XPx. If there are x0 ∈ X and P0 ∈ Px0

such that P0 is not a sequential
neighborhood at x0, take a sequence {xn} in X − P0 such that xn → x0 in τ .
Put V = X − {xn : n ∈ N}. Then V is not a sequential neighborhood at x0

in τ . For each x ∈ V , if x = x0, take Px = P0, then Px ⊂ V ; if x 6= x0, then
x ∈ X − ({x0} ∪ {xn : n ∈ N}), thus Px ⊂ X − ({x0} ∪ {xn : n ∈ N}) ⊂ V for
some Px ∈ Px (X is Hausdorff). Hence, x0 ∈ V ∈ τP , which is a contradiction.
Thus, P is an sn-network for (X, τ). �

Corollary 3.1. Let P be a standard network for X. If X has (F) and (G),
then (X, τP) is Fréchet.

Proof. Let U be a sequential neighborhood at x ∈ X in τP . Then U is a
sequential neighborhood at x in τ by Lemma 3.2, thus U is a neighborhood at
x in τP by (F). Hence (X, τP ) is a Fréchet space by Lemma 3.1. �

By Theorems 2.1, 2.2 and Corollary 3.1, the following result holds.

Theorem 3.2. Let P be a standard network for X. Then (X, τP ) is a Fréchet

space and X has the (G) if and only if X has the (F) and (A)∗P = [A] for each

A ⊂ X.

Example 3.1. Stone-Čech compactification βN is not a sequential space, but
there is an sn-network P for βN such that (A)∗P = [A] for each A ⊂ βN.
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Since βN contains no non-trivial convergent sequence [4], every one-point set
of βN is sequential open, and βN is not a sequential space. Let P = ∪x∈XPx,
where Px = {{x}} for each x ∈ X . Then P is an sn-network for βN, (βN, τP )
is a discrete space and (A)∗P = A = [A] for each A ⊂ βN.

Example 3.2. Let (X, τ) be the sequential fan Sω. There is a standard net-
work P for X such that (X, τP) is not sequential.

Continue the Example 2.1. For each x ∈ X , let Px = {{x}} if x 6= s; let
Px = {{s} ∪ (∪n≥mLn) : m ∈ N, Ln ⊂ Tn, |Tn − Ln| < ℵ0} if x = s. Then P is
a standard network for X . {s} is sequentially open in τP , it is not open in τP ,
thus (X, τP) is not sequential.

Example 3.3. Let (X, τ) be the Arens’ space S2. There are weak bases P and
Q for X such that

(1) P is countable, X has the (G), but it has not the (F);
(2) (A)∗Q 6⊂ [A] for some A ⊂ X .

The Arens’ space S2 [2] is defined as follows. Let T0 = {an : n ∈ N} be a
sequence converging to s 6∈ T0 and let each Tn (n ∈ N) be a sequence converging
to an 6∈ Tn. Let T be the topological sum of {Tn ∪ {an} : n ∈ N}. Thus

S2 = {s} ∪ (
⋃

{Tn : n ≥ 0})

is a quotient space obtained from the topological sum of T0 and T by identifying
each an ∈ T0 with an ∈ T . For each x ∈ S2 − {s}, let Px be a countable
neighborhood base at x in S2, and Ps = {{s} ∪ {am : m ≥ n} : n ∈ N}. Put
P = ∪x∈S2

Px. It is easy to see that P is a weak base for S2, S2 is weakly
first-countable, and (A)∗P = [A] for each A ⊂ X . Since P is a weak base for
S2, τ = τP , thus X has the (G). Put S = {s} ∪ {an : n ∈ N}. Then S is
a sequential neighborhood at s in τ , but it is not a neighborhood at s in τP .
Thus X has not the (F).

Let Q be a neighborhood base of S2, and A = ∪{Tn : n ∈ N}. Then
(A)∗Q = S2 6⊂ S2 − {s} = [A].

Question 3.1. How to characterize a standard network P for a space X such
that (X, τP) is sequential?

It is well known that a space X is Fréchet if and only if it is a pesudo-open
image of a metric space, and a space X is snf -countable if and only if it is
an 1-sequence-covering image of a metric space [8]. The following question is
raised.

Question 3.2. Let P be a standard network for a spaceX . How to characterize
a space X in which (A)∗P ⊂ [A] for each A ⊂ X by a nice image of a metric
space?

In the following, the relations of neighborhoods are obtained in this section.
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