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A NOTE ON COUNTABLY BI-QUOTIENT MAPPINGS
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Abstract

In this paper some properties of weakly first countable spaces and sequence-

covering images of metric spaces are studied. Strictly Fréchet spaces are characterized

as the spaces in which every sequence-covering mapping onto them is strictly countably

bi-quotient. Strict accessibility spaces are introduced, in which a T1-space X is strict

accessibility if and only if every quotient mapping onto X is strictly countably bi-

quotient. For a T2, k-space X every quotient mapping onto X is strictly countably

bi-quotient or bi-quotient if and only if X is discrete. They partially answer some

questions posed by F. Siwiec in [16, 17].

1. Introduction

Topologists obtained many interesting characterizations of spaces by map-
pings, in particular some images of metric spaces. Fréchet spaces, and sequential
spaces belong to the class of weakly first countable spaces. The class of weakly
first countable spaces plays an important role in generalized metric spaces and
metrization, which has become a striking research subject in general topology.
For example,

Theorem 1.1 [4, 16]. The following are equivalent for a space X :
(1) X is a Fréchet space;
(2) Every sequence-covering mapping onto X is pseudo-open;
(3) X is a pseudo-open image of a metric space.

Theorem 1.2 [18]. A T1-space X is an accessibility space if and only if every
quotient mapping onto X is pseudo-open.

Theorem 1.3 [13]. Every @-space is preserved by a closed and countably
bi-quotient mapping.
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In this paper we study some properties of weakly first countable spaces and
sequence-covering images of metric spaces. Every strongly Fréchet space can be
characterized as a countably bi-quotient image of a metric space [16]. In 1982,
Gerlits and Nagy [5] defined the strictly Fréchet spaces, which are also known as
w-spaces in the early [6, 14]. Every first countable space is strictly Fréchet, and
every strictly Fréchet space is strongly Fréchet. In the sections 2 and 3, we
discuss the strictly Fréchet spaces by the above theorems’ inspiring. In 1987,
Jianping Zhu [21] defined the w-mappings, and proved that a space X is a
w-space if and only if it is a w-image of a metric space. Whether a strictly
Fréchet space X can be characterized as every sequence-covering mapping onto
X is a w-mapping? On the other hand, how to characterize a space X such
that every quotient mapping onto X is a w-mapping? In this paper w-mappings
are renamed to ‘‘strictly countably bi-quotient mappings’’. We obtain a new
characterization of strictly Fréchet spaces by sequence-covering mappings, and
introduce the concept of strictly accessibility spaces, which satisfies the condition
that every quotient mapping onto this space is strictly countably bi-quotient.

In 1975, Siwiec [17, Table 22, p. 32] posed the following question: give an
intrinsic characterization of the class of spaces Y such that every quotient
mapping onto Y is bi-quotient. In the section 4, we discuss some relations of
mappings about almost-open mappings, bi-quotient mappings, strictly countably
bi-quotient mappings and sequence-covering mappings, and give a positive answer
to Sewiec’s question.

In this paper all mappings are continuous and onto.

2. Strictly Fréchet spaces

In this section, we discuss the relations among strictly Fréchet spaces, and
sequence-covering mappings, strictly countably bi-quotient mappings.

Definition 2.1 [5]. A space X is called strictly Fréchet if whenever fAngn is
a sequence of subsets in X and a point x A 7

n AN An, there exists an xn A An for
each n A N such that the sequence xn ! x.

A Fréchet space [4], by definition, is a space satisfying Definition 2.1 but
with all the sets An being equal. A strongly Fréchet space [16], by definition, is
a space satisfying Definition 2.1 but with the sequence fAngn being decreasing
in X .

It is obvious that, first countable spaces ) strictly Fréchet spaces ) strongly
Fréchet spaces ) Fréchet spaces.

In 1987, Jianping Zhu [21] defined w-mappings. In this paper w-mappings
are renamed to ‘‘strictly countably bi-quotient mappings’’.

Definition 2.2. A mapping f : X ! Y is called strictly countably bi-
quotient if for each y A Y and for each countable cover fUn : n A Ng of f �1ðyÞ
by open subsets of X there exists an m A N such that y A intð f ðUmÞÞ.
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A countably bi-quotient mapping [16], by definition, is a mapping satisfying
Definition 2.2 but y A intð f ð6UÞÞ for some finite family UH fUn : n A Ng.

It is obvious that, almost-open mappings1 ) strictly countably bi-quotient
mappings ) countably bi-quotient mappings ) pseudo-open mappings2.

Lemma 2.3 [11]. Let X be a strictly Fréchet space and fAngn be a sequence
of subsets in X. If x A 7

n AN An, there exists a sequence fbmgm in X such that
bm ! x and fm A N : bm A Ang is infinite for each n A N.

A mapping f : X ! Y is called sequence-covering [16] if whenever fyngn is
a sequence in Y converging to a point y A Y , there exists a sequence of points
xn A f �1ðynÞ for n A N, and x A f �1ðyÞ such that xn ! x.

Lemma 2.4. Let f : X ! Y be a sequence-covering mapping. If Y is strictly
Fréchet, then f is strictly countably bi-quotient.

Proof. Assume that y A Y and f �1ðyÞH6
n AN Un, where Un is open in X

for each n A N. Suppose y B intð f ðUnÞÞ for each n A N, then y A Y � f ðUnÞ.
By Lemma 2.3, there exists a sequence fyig in Y converging to y such that
fi A N : yi A Y � f ðUnÞg is an infinite set for each n A N. Since f is sequence-
covering, there is a sequence fxig in X and a point x A f �1ðyÞ such that each
xi A f �1ðyiÞ and xi ! x. Then there exists k A N such that x A Uk, thus there
is i0 A N such that xi A Uk for each ib i0, so yi A f ðUkÞ, a contradiction. So f is
strictly countably bi-quotient. r

Lemma 2.5 [21]. Strictly Fréchet spaces are preserved by strictly countably
bi-quotient mappings.

Definition 2.6 [20]. A mapping f : X ! Y is called set-sequence-covering if
whenever fAngn is a decreasing sequence of subsets in Y converging to a point
y A Y , there exists x A f �1ðyÞ and a decreasing sequence fBngn of subsets in X
such that Bn ! x3 and f ðBnÞ ¼ An, En A N.

Lemma 2.7 [20]. Every set-sequence-covering mapping is a sequence-covering
mapping.

Lemma 2.8 [9, 20]. Every space is a set-sequence-covering image of a metric
space.

1A mapping f : X ! Y is almost-open if there is x A f �1ðyÞ for every y A Y such that f ðUÞ is

a neighborhood at y in Y when U is a neighborhood at x in X .

2A mapping f : X ! Y is pseudo-open if f ðUÞ is a neighborhood at y in Y for every y A Y

when f �1ðyÞHU with U open in X .

3Bn ! x in X means that the set-sequence fBngn converges to x in X , i.e., if whenever U is a

neighborhood of x in X there exists m A N such that Bn HU for each nbm.
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Proof. This lemma was proved for a T1-space in [20]. We show the lemma
without any properties of separations.

In [9, Theorem 4.4] Michael proved the following theorem. Let Y be a
space. There are a metric space X and a mapping f : X ! Y such that if fCngn
is a decreasing sequence of subsets of Y which is a network at a point y
in Y4, there is x A f �1ðyÞ and a decreasing local base fDngn at x in X such
that f ðDnÞ ¼ Cn, En A N. We will show that the mapping f : X ! Y is set-
sequence-covering. Let fAngn be a decreasing sequence of subsets in Y con-
verging to a point y A Y . Then fAn U fyggn is a decreasing network at y in
Y . By Michael’s theorem above, there is x A f �1ðyÞ and a decreasing local
base fDngn at x in X such that f ðDnÞ ¼ An U fyg, En A N. We may assume that
y B An, and put Bn ¼ Dn � f �1ðyÞ. Then fBngn is a decreasing sequence of
subsets in X , Bn ! x and f ðBnÞ ¼ An, En A N. r

Theorem 2.9. The following are equivalent for a space X :
(1) X is a strictly Fréchet space;
(2) Every sequence-covering mapping onto X is strictly countably bi-quotient;
(3) Every set-sequence-covering mapping onto X is strictly countably bi-

quotient;
(4) X is a strictly countably bi-quotient image of a metric space.

Proof. ð4Þ ) ð1Þ ) ð2Þ ) ð3Þ. It is obvious by Lemmas 2.4, 2.5 and 2.7.
ð3Þ ) ð4Þ. Suppose that a space X satisfies the condition (3). There is a

metric space M and a set-sequence-covering mapping f : M ! X by Lemma 2.8.
Then f is strictly countably bi-quotient by the condition (3).

ð1Þ , ð4Þ in Theorem 2.9 is proved by Zhu [21]. r

Question 2.10. Is a strictly countably bi-quotient mapping on a metric
space sequence-covering?

Question 2.11. Is an almost-open mapping on a strictly Fréchet space
sequence-covering?

3. Strict accessibility spaces

By Theorem 1.2 we are interesting in the following question: under what
condition for a space X in which every quotient mapping onto X is strictly
countably bi-quotient? The following concept is introduced.

Definition 3.1. A space X is called a strict accessibility space if whenever
fAngn is a sequence of subsets in X and x is an accumulation point of An for
each n A N, there exists a closed set C in X such that x is an accumulation point
of C, but not of C � An for each n A N.

4A family P of subsets of a space Y is a network at y A Y if U is a neighborhood of y in Y

then PHU for some P A P, and y A 7P.
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A strong accessibility space [16], by definition, is a space satisfying Definition
3.1 but with the sequence fAngn being decreasing in X .

Obviously, every strict accessibility space is strong accessibility.

Theorem 3.2. A T1-space Y is a strict accessibility space if and only if every
quotient mapping onto Y is strictly countably bi-quotient.

Proof. Necessity. Let Y be a strict accessibility space. If there is a
quotient mapping f from a space X onto the space Y such that f is not a
strictly countably bi-quotient mapping, then there exists a point y A Y and
a sequence fUngn of open subsets in X such that fUngn covers f �1ðyÞ and
y A f ðUnÞ � intð f ðUnÞÞ for each n A N. Let An ¼ Y � f ðUnÞ for each n A N.
Then y is an accumulation point of An. By the strict accessibility of Y , there
exists a closed set C in Y such that y is an accumulation point of C, but not of
C � An ¼ C V f ðUnÞ for each n A N. There exists an open neighborhood Vn of
y in Y such that Vn VC V f ðUnÞ ¼ fyg, thus C V f ðUnÞ � fyg ¼ C V f ðUnÞ � Vn

is closed. Put D ¼ C � fyg. Then D is a non-closed set in Y , thus f �1ðDÞ is

a non-closed set in X because f is quotient. Take a point x A f �1ðDÞ � f �1ðDÞ,
then f ðxÞ A D�D ¼ fyg, so x A f �1ðyÞH6

n AN Un. Hence x A Um for some

m A N. Set G ¼ Um � f �1ðDÞ. Then x A GV f �1ðDÞ, and

G ¼ Um � f �1ðDÞ ¼ Um � f �1ðC V f ðUmÞ � fygÞ
is open in X , thus GV f �1ðDÞ0j, a contradiction. Hence, every quotient
mapping onto Y is strictly countably bi-quotient.

Su‰ciency. Let Y be a T1-space which is not strict accessibility. Then there
exists a sequence fAngn of subsets in Y and a point y A Y such that y is an
accumulation point of An for each n A N, and if C is a closed set in Y and y is
an accumulation point of C, then y is an accumulation point of C � An for
some n A N.

Assume that y B An and let Bn ¼ Y � ðAn U fygÞ for each n A N. Then
Y ¼ An UBn U fyg. Put X ¼ 6

n AN Xn, where each

Xn ¼ ððY � fygÞ � f0g � fngÞU ððBn U fygÞ � f1g � fngÞ:
And X is endowed with the subspace topology of the product space Y � f0; 1g�
N. Define a mapping f : X ! Y by f ðx; t; nÞ ¼ x, Eðx; t; nÞ A X . Then f is
continuous and onto. For each n AN, put Un ¼ ðBn UfygÞ� f1g� fng, then Un

is open in X , and f ðUnÞ ¼ Bn U fyg is not a neighborhood of y in Y . Since

f �1ðyÞ ¼ fðy; 1; nÞ : n A NgH 6
n AN

Un;

f is not strictly countably bi-quotient. Next, we will show that f is quotient.
Let EHY and f �1ðEÞ be a closed subset of X . Since ðY �fygÞ� f0g� f0g

is a homeomorphic to Y � fygHY , assume that y B E, thus we have left only
to show that y B E. Since f �1ðEÞV ððY � fygÞ � f0g � f0gÞ is closed in X ,
E � fyg ¼ E is closed in Y � fyg, thus E ¼ E � fyg, i.e., EHE U fyg. Since
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f �1ðEÞ is closed in X and ðy; 1; nÞ B f �1ðEÞ for each n A N, then there exists an
open neighborhood Vn of y in Y such that Vn VBn VE ¼ j, so E VVn HAn.
Put C ¼ E V6

n AN Vn. Then C is closed in Y and for each n A N, C VVn ¼
E VVn HAn U fyg, so y is not an accumulation point of C � An. Then y is not
an accumulation point of C, thus y B E. Therefore, E is closed in Y , so f is
quotient. r

Let X be a space. Denote Aa ¼ fx A X : x is an accumulation point of Ag.
A point x A X is an accumulation point of a family F of subsets of X if x A F a

for each F A F.

Theorem 3.3. The following are equivalent for a strong accessibility space X :
(1) X is a strict accessibility space;
(2) If a sequence fAngn of subsets of X has an accumulation point x, then x

is also an accumulation point of the sequence f7
nam

Angm;
(3) ðAVBÞa ¼ Aa VBa for each A;BHX.

Proof. ð1Þ ) ð2Þ. Suppose that a sequence fAngn of subsets of X has an
accumulation point x. Since X is strict accessibility, there exists a closed subset
C such that x is an accumulation point of C, but not of C � An for each
n A N. For each m A N and an open neighborhood U at x in X , if nam, there
exists an open neighborhood Vn at x in X such that Vn V ðC � AnÞH fxg,
i.e., Vn VCHAn U fxg. Put V ¼ 7

nam
Vn. Then V VCH7

nam
An U fxg, thus

U VV VC � fxgHU V ð7
nam

AnÞ. Since x is an accumulation of C, x is an

accumulation point of 7
nam

An.
ð2Þ ) ð3Þ is obvious.
ð3Þ ) ð1Þ. If a sequence fAngn of subsets of X has an accumulation point

x A X , then x is also an accumulation point of the sequence f7
nam

Angm by
(3). By the strong accessibility of X , there is a closed subset C of X such that x
is an accumulation of C, but not of C �7

nam
An for each m A N, thus x not of

C � An for each n A N. Hence, X is strict accessibility. r

Corollary 3.4. Strict accessibility is a hereditary property.

Proof. Since strong accessibility is hereditary [16], and the condition (3) in
Theorem 3.3 is also hereditary, strict accessibility is hereditary by Theorem 3.3.

r

A space X is a k-space [3] if U is open in X whenever U VK is open in K
for every compact subset K of X . Every sequential space is a k-space.

Lemma 3.5 [1]. Let X be a T2-space. Then X is a Fréchet space if and only
if X is a k-space and every quotient mapping onto X is pseudo-open.

Corollary 3.6. Every compact subset is finite in a strict accessibility T2-
space.
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Proof. Let X be a strict accessibility T2-space. If X contains an infinite
compact subset K, then K is Fréchet by Corollary 3.4, Lemma 3.5, and Theorem
3.2, thus there exists a non-trivial convergent sequence fxkg in K . Put A ¼
fx2k : k A Ng, B ¼ fx2kþ1 : k A Ng, then ðAVBÞa 0Aa VBa, a contradiction by
Theorem 3.3. Hence, every compact subset is finite in X . r

Corollary 3.7. There are no non-trivial convergent sequences in a strict
accessibility space.

Every strongly Fréchet T2-space is a strong accessibility space [16]. Is a
strictly Fréchet T2-space a strict accessibility space? The answer is negative.
The real line R is not a strict accessibility space by Corollary 3.7.

4. Related mappings

A mapping f : X ! Y is bi-quotient [8] if for each y A Y and for each cover
U of f �1ðyÞ by open subsets of X , y A intð f ð6U 0ÞÞ for some finite family
U 0 HU.

Zhu [22] proved that an almost-open mapping is equivalent to a mapping
satisfying the definition of bi-quotient mappings but with y A intð f ðUÞÞ for some
U A U. It is easy to see that, almost-open mappings ) bi-quotient mappings
and strictly countably bi-quotient mappings.

A space X is bi-sequential [10] if whenever F is a filter base in X with a
cluster point x A X5, there exists a decreasing sequence fAngn of subsets in X
such that each An intersects each element of F, and An ! x.

Zhu [22] proved that a first countable space is equivalent to a space
satisfying the definition of bi-sequential spaces but with the family F of sub-
sets of X having a cluster point x A X . It is easy to see that, first countable
spaces ) bi-sequential spaces and strictly Fréchet spaces.

F. Siwiec [17, Table 22, p. 32] posed the following question in 1975: give
an intrinsic characterization of the class of spaces Y such that every quotient
mapping onto Y is bi-quotient. In this section the question is answered and
some related mappings are discussed.

A space X is determined by a cover P of X , or P determines X , if U HX is
open (closed) in X if and only if U VP is relatively open (relatively closed) in P
for every P A P [7].

Theorem 4.1. The following are equivalent for a T1-space X :
(1) Every quotient mapping onto X is almost-open;
(2) If X is determined by a cover P, then fintðPÞ : P A Pg is a cover of X.

Proof. ð1Þ ) ð2Þ. Assume that every quotient mapping onto X is almost-
open. If X is determined by a cover P, let Z ¼ 0P, and f be the natural
mapping from Z onto X . Then f is quotient by [7, Lemma 1.8], thus f is

5A point x A X is a cluster point of a family F of subsets of a space X if x A F for each F A F.
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almost-open. For each x A X , there is a zx A f �1ðxÞ such that f ðUÞ is a neigh-
borhood at x in X if U is a neighborhood at zx in Z. Take P A P with zx A P,
then P is open in Z, thus x A intð f ðPÞÞ ¼ intðPÞ. Hence fintðPÞ : P A Pg is a
cover of X .

ð2Þ ) ð1Þ. Let f : Z ! X be quotient, where X satisfies the condition (2).
If f is not almost-open, then there is x0 A X satisfying that there is an open
neighborhood Uz of z in Z such that f ðUzÞ is not a neighborhood of x0 in X for
each z A f �1ðx0Þ. Put U ¼ fUz : z A f �1ðx0ÞgU fZ � f �1ðx0Þg. Then U is an
open cover of Z, Z is determined by U, thus X is determined by f ðUÞ because f
is quotient [7, Lemma 1.7]. Hence fintðPÞ : P A f ðUÞg is a cover of X by the
condition (2). There is z A f �1ðx0Þ such that x0 A intð f ðUzÞÞ, a contradiction.
So f is almost-open. r

By the similar method in Theorem 4.1 Siwiec’s question above has an answer
as follow.

Theorem 4.2. Let X be a T1-space. Then every quotient mapping onto X
is bi-quotient if and only if whenever X is determined by a cover P then
fintð6P 0Þ : a finite P 0 HPg is a cover of X.

Lemma 4.3. Every space is a sequence-covering image of a metric space
which is the topological sum of some convergent sequences.

Proof. Let X be a space. Denote the family of all convergent sequences
containing its limit in X by fSa : a A Ag. For every a A A, set Sa ¼ fxagU
fxa;n : n A Ng, where xa;n ! xa. Denote Sa endowed with the following new
topology by S 0

a: the neighborhoods of the point xa in S 0
a are the finite complement

subsets of Sa, the other points are isolated. Then S 0
a is a compact metric space,

the topology on S 0
a is finer than the subspace topology on Sa of X . Let M be

the disjoint topological sum of the family fS 0
a : a A Ag [3], and define a function

f : M ! X by f jS 0
a
: S 0

a ! Sa is homeomorphic for each a A A. Then M is a
metric space which is the topological sum of some convergent sequences, and f
is continuous and onto. It is easy to see that f is sequence-covering. r

Theorem 4.4. The following are equivalent for a T2, k-space X :
(1) X is a discrete space;
(2) Every mapping onto X is open;
(3) Every quotient mapping onto X is almost-open;
(4) Every quotient mapping onto X is bi-quotient;
(5) Every quotient mapping onto X is strictly countably bi-quotient.

Proof. It is clear that ð1Þ ) ð2Þ ) ð3Þ ) ð4Þ and ð5Þ. And ð5Þ ) ð1Þ by
Theorem 3.2 and Corollary 3.6.

ð4Þ ) ð1Þ. Assume that every quotient mapping onto X is bi-quotient.
Then X is Fréchet by Lemma 3.5. There is a metric space M ¼ 0S and a
sequence-covering mapping f : M ! X such that each S A S is a convergent
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sequence containing its a limit by Lemma 4.3. Then f is quotient because X is
a sequence space [16], so f is bi-quotient. For each x A X , f �1ðxÞ is covered
by the family S of open subsets of M, there is a subset C in X which is the
union of finite convergent sequences in X such that C is a neighborhood of x
in X because f is bi-quotient. If x is not an isolated point in X , assume that
C ¼ fxgU fxn : n A Ng is an open subset of X , where the sequence fxngn is non-
trivial and converges to x. So X ¼ Cl ðX � CÞ. Let CðNÞ ¼ AUN be the
Isbell-Mrówka space [2, Example 4.4], and let Y ¼ CðNÞl ðX � CÞ. A map-
ping f : Y ! X is defined by

f ðyÞ ¼
x; y A A

xn; y ¼ n A N

y; y A X � C:

8<
:

Then f is quotient, but not bi-quotient [15, Theorem 2.2], a contradiction. Thus
X is a discrete space. r

Lemma 4.5. Let f : X ! Y be strictly countably bi-quotient. If f is a
boundary Lindelöf mapping with a T1-space Y , then f is almost-open.

Proof. If f is not almost-open, there exists y A Y such that for each
x A f �1ðyÞ there exists an open neighborhood Ux at x in X satisfying
y B intð f ðUxÞÞ. Then y is not an isolated point in Y . Since qf �1ðyÞ is
Lindelöf, there is a countable subset fxi : i A NgH f �1ðyÞ such that qf �1ðyÞH
6fUxi : i A Ng, thus f �1ðyÞH intð f �1ðyÞÞU ð6fUxi : i A NgÞ. Since f is strictly
countably bi-quotient, y A intð f ðUxiÞÞ for some i A N, a contradiction. r

Theorem 4.6. Let f : X ! Y be a closed mapping. The following are
equivalent for a metric space X :

(1) f is an almost-open mapping;
(2) f is a set-sequence-covering mapping;
(3) f is a sequence-covering mapping;
(4) f is a strictly countably bi-quotient mapping.

Proof. ð1Þ ) ð2Þ by [20, Proposition 2.4], and ð2Þ ) ð3Þ is obvious.
ð3Þ ) ð4Þ. Suppose that f is sequence-covering. Since metric spaces are

preserved by sequence-covering and closed mappings [12, 19], Y is metric, thus f
is strictly countably bi-quotient by Lemma 2.4.

ð4Þ ) ð1Þ. Suppose that f is strictly countably bi-quotient. Since f is
countably bi-quotient, f is boundary-compact by [10, Corollary 9.10]. Thus
f is almost-open by Lemma 4.5. r

Remark 4.7. (1) There exists a perfect mapping6 which is not sequence-
covering with compact metric domain and range [16, Example 2.6]. Thus a

6A mapping f : X ! Y is perfect if f is closed and each f �1ðyÞ is compact for each y A Y .
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perfect mapping on a metric space can not be strictly countably bi-quotient
because it can not be sequence-covering.

(2) A closed and almost-open mapping on a metric space can not be open.
For example, let Y ¼ fygU fyn : n A Ng, where fyng is a non-trivial sequence
converging to y. Let X ¼ fyglY , and f be the natural mapping from X onto
Y . Then X is a metric space, f is closed and almost-open, but not open.

Question 4.8. Give an intrinsic characterization of the class of spaces X
satisfying the condition that every sequence-covering mapping onto X is set-
sequence-covering.
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