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In this paper the concept of property ω-U is introduced in topological groups. The main
results are that (1) every Lindelöf topological group and every totally bounded topolog-
ical group have property ω-U ; (2) a topological group is R-factorizable if and only if it
is an ω-narrow group with property ω-U ; (3) M -factorizable groups are preserved by
open continuous homomorphisms, which gives a positive answer to a problem posed by
A.V. Arhangel’skiı̌ and M. Tkachenko.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A topological group G is a group G with a topology such that the product mapping of G × G onto G associating xy
with arbitrary x, y ∈ G is jointly continuous and the inverse mapping of G onto itself associating x−1 with arbitrary x ∈ G is
continuous. All topological groups considered here are assumed to be Hausdorff.

Let G be a topological group. Recall that a real-valued function f on G is left uniformly continuous, if f : (G,V l
G) → (R,U )

is a uniformly continuous function, where V l
G is the left uniform structure on G and U is the uniform structure on R.

This means that for every ε > 0, there exists O ∈ V l
G such that | f (x) − f (y)| < ε whenever (x, y) ∈ O . Similarly, f is

called right uniformly continuous, if f : (G,V r
G ) → (R,U ) is a uniformly continuous function, where V r

G is the right uniform
structure on G . A real-valued function f on G is uniformly continuous, if f is both left and right uniformly continuous.
J.M. Kister [6] called that a topological group G has property U provided that each continuous real-valued function f on G
is uniformly continuous. It is well known that every compact topological group has property U and clearly every discrete
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group has property U . Kister [6, Corollary 2] had shown that a locally compact group with property U is either discrete or
compact.

A topological group G is said to be totally bounded [12] if, for each neighborhood V of the identity in G , a finite number
of translates of V covers G . W.W. Comfort and K.A. Ross [2, Theorems 1.5 and 2.7] have shown that every pseudocompact
topological group has property U , but a totally bounded topological group need not have property U . Therefore, the above
analysis naturally leads us to consider what properties the continuous real-valued functions defined on totally bounded
groups have.

In this paper, we introduce the concept of property ω-U in Definition 4.1, which is weaker than property U , in topological
groups. It is shown that every totally bounded group and every Lindelöf group have property ω-U .

Some decomposition theorems of topological groups are obtained by property ω-U . A topological group G is R-
factorizable [8,9] if, for every continuous real-valued function f on G , there exist a continuous homomorphism p : G → K
onto a second-countable topological group K and a continuous function h : K → R such that f = h ◦ p. Some charac-
terizations of R-factorizable and related m-factorizable and M -factorizable groups are gave in terms of property ω-U
(Theorems 4.9, 5.8 and 5.11). It is showed that an open continuous homomorphic image of an M -factorizable group is
M -factorizable, which affirmatively answers a problem posed by A.V. Arhangel’skiı̌ and M. Tkachenko in [1, Open Prob-
lem 8.4.4].

2. ω-Uniform continuity in uniform spaces

Let (X,U ) and (Y ,V ) be uniform spaces [3,12]. A mapping f : (X,U ) → (Y ,V ) is called uniform continuous if for every
V ∈ V there exists U ∈ U such that ( f (x), f (x′)) ∈ V whenever (x, x′) ∈ U .

Let (X,U ) be a uniform space. Put U [x] = {y ∈ X | (x, y) ∈ U } for each U ∈ U . Recall that a continuous real-valued
function f : X → R is uniformly continuous if, for every ε > 0, there exists U ∈ U such that f (U [x]) ⊆ ( f (x)−ε, f (x)+ε) for
all x ∈ X . It is well known that every continuous real-valued function on a compact uniform space is uniformly continuous.
We introduce the concept of ω-uniform continuity as a generalization of the uniform continuity in uniform spaces.

Definition 2.1. Let (X,U ) be a uniform space. A function f : X → R is called ω-uniformly continuous if, for every ε > 0,
there is a countable family V ⊆ U satisfying that for each x ∈ X there exists V x ∈ V such that

f
(
V x[x]

) ⊆ (
f (x) − ε, f (x) + ε

)
.

Remark 2.2. It is easy to see that uniformly continuous ⇒ ω-uniformly continuous ⇒ continuous. However, the converses
are not true, see Remark 2.7 and Theorem 4.9.

Consider a uniform space (X,U ) and a pseudometric ρ on the set X . The pseudometric ρ is called uniform with respect
to U if for every ε > 0 there exists V ∈ U such that ρ(x, y) < ε whenever (x, y) ∈ V .

Lemma 2.3. ([3, Corollary 8.1.11]) For every uniformity U on a set X and every V ∈ U there exists a pseudometric ρ on X which is
uniform with respect to U and satisfies the condition {(x, y) | ρ(x, y) < 1} ⊆ V .

Remark 2.4. Let (X,U ) be a uniform space. For every V ∈ U , take a pseudometric ρV satisfying the conditions in
Lemma 2.3. By letting xE V y whenever ρV (x, y) = 0 an equivalent relation E V on the set X is defined. Let XV be the
quotient set of E V . By letting ρV ([x], [y]) = ρV (x, y) for all [x], [y] ∈ XV a metric ρV on the set XV is defined. Let UV be
the uniformity on the set XV induced by the metric ρV . It follows from Lemma 2.3, that letting f V (x) = [x], we define a
uniformly continuous mapping f V : (X,U ) → (XV ,UV ).

A uniform space (X,U ) is metrizable if there exists a metric ρ on the set X such that the uniformity induced by ρ
coincides with the original uniformity U . It is well known that a uniformity U on a set X is induced by a metric ρ if and
only if the uniformity U has a countable base [3].

Theorem 2.5. Let (X,U ) be a uniform space and f : X → R be a function. The following are equivalent.

(1) f is ω-uniformly continuous;
(2) there exist a uniformly continuous function g : (X,U ) → (Y ,V ) onto a metrizable uniform space (Y ,V ) and a continuous

function p : Y → R such that f = p ◦ g.

Proof. (1) ⇒ (2). Let f : X → R be ω-uniformly continuous. By Definition 2.1, for each n ∈ N there exists a countable family
ζn ⊆ U satisfying that for every x ∈ X there exists V x ∈ ζn such that f (V x[x]) ⊆ ( f (x) − 1

n , f (x) + 1
n ). Put ζ = ⋃

n∈N ζn .
Then |ζ | � ω. According to Lemma 2.3, for each V ∈ ζ there exists a pseudometric ρV on the set X which is uniform with
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respect to U and satisfies the condition {(x, y) | ρV (x, y) < 1} ⊆ V . Therefore, there exists a uniformly continuous function
gV : (X,U ) → (XV ,UV ), where gV and (XV ,UV ) are defined according to Remark 2.4. Define

g = �V ∈ζ gV : (X,U ) →
(∏

V ∈ζ

XV ,
∏
V ∈ζ

UV

)
,

where �V ∈ζ gV is the diagonal product of the family {gV | V ∈ ζ }. Since gV is uniformly continuous for each V ∈ ζ and the
Cartesian product (

∏
V ∈ζ XV ,

∏
V ∈ζ UV ) is a metrizable uniform space, g = �V ∈ζ gV is uniformly continuous.

Claim. f (x1) = f (x2) for all x1, x2 ∈ X satisfying g(x1) = g(x2).

Indeed, assume to the contrary, and choose x1, x2 ∈ X and n ∈ N such that

g(x1) = g(x2) and f (x1) /∈
(

f (x2) − 1

n
, f (x2) + 1

n

)
.

By the property of ζn , for x2 there exists V ∈ ζn such that

f
(

V [x2]
) ⊆

(
f (x2) − 1

n
, f (x2) + 1

n

)
.

From g(x1) = g(x2) it follows that gV (x1) = gV (x2), hence ρV (x1, x2) = 0, thus

(x2, x1) ∈ {
(x, y) ∈ X × X

∣∣ ρV (x, y) < 1
} ⊆ V

by Lemma 2.3 and Remark 2.4. Therefore, x1 ∈ V [x2], which implies that

f (x1) ∈ f
(

V [x2]
) ⊆

(
f (x2) − 1

n
, f (x2) + 1

n

)
.

This contradiction completes the proof of the claim.

From the claim it follows that there is a function p : g(X) → R such that f = p◦ g . It remains to prove that the function p
is continuous.

Let y ∈ g(X) and ε > 0. Take an n ∈ N with 1
n < ε. Choose a point x ∈ X with g(x) = y. For x there exists V ∈ ζn such

that

f
(

V [x]) ⊆
(

f (x) − 1

n
, f (x) + 1

n

)
=

(
p(y) − 1

n
, p(y) + 1

n

)
⊆ (

p(y) − ε, p(y) + ε
)
.

Put

B = {
z ∈ XV

∣∣ ρV
(
πV (y), z

)
< 1

}
,

where ρV is defined according to Remark 2.4 and πV : ∏V ′∈ζ XV ′ → XV is the projection. And set

W = g(X) ∩
( ∏

V ′∈ζ\{V }
XV ′ × B

)
.

Clearly, W is a neighborhood of y. Now we shall prove that p(W ) ⊆ (p(y)−ε, p(y)+ε), which implies that p is continuous.
Indeed, from Lemma 2.3 and Remark 2.4 it follows that

g−1(W ) = g−1
V (B) = {

z ∈ X
∣∣ ρV (x, z) < 1

} ⊆ V [x].
Thus,

p(W ) = f
(

g−1(W )
) ⊆ f

(
V [x]) ⊆ (

f (x) − ε, f (x) + ε
) = (

p(y) − ε, p(y) + ε
)
.

(2) ⇒ (1). There exist a uniformly continuous function g : (X,U ) → (Y ,V ) onto a metrizable uniform space (Y ,V ) and
a continuous function p : Y → R such that f = p ◦ g . Since (Y ,V ) is metrizable, there exists a countable base μ of the
uniformity V . Put γ = {ψ−1(V ) | V ∈ μ}, where ψ = (g, g) : X × X → Y × Y . Then |γ | � ω and γ ⊆ U by the uniform
continuity of g . Take any ε > 0. Since p is continuous, there exists V ∈ μ such that p(V [g(x)]) ⊆ ( f (x) − ε, f (x) + ε). From
ψ−1(V ) ∈ γ and

f
(
ψ−1(V )[x]) ⊆ p

(
V

[
g(x)

]) ⊆ (
f (x) − ε, f (x) + ε

)
it follows that f is ω-uniformly continuous. �

From Theorem 2.5 it easily follows the following result.
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Corollary 2.6. Every continuous real-valued function f on a metrizable uniform space is ω-uniformly continuous.

Remark 2.7. “ω-Uniformly continuous” cannot be replaced by “uniformly continuous” in Corollary 2.6. For instance, R with
usual uniformity is metrizable, but not all continuous real-valued functions on R are uniformly continuous. It implies that
ω-uniformly continuous � uniformly continuous.

3. ω-Uniform continuity in topological groups

Let G be a topological group. Denote by Ns(G, e) the family of all open symmetric neighborhoods at the identity e of G
in this paper. We introduce the concept of ω-uniform continuity as a generalization of the uniform continuity on topological
groups.

Definition 3.1. A real-valued function f on a topological group G is left (resp. right) ω-uniformly continuous if, for every
ε > 0, there exists a countable family U ⊆ Ns(G, e) such that for every x ∈ G , there exists U ∈ U such that | f (x)− f (y)| < ε
whenever x−1 y ∈ U (resp. whenever yx−1 ∈ U ).

Definition 3.2. A real-valued function f on a topological group G is ω-uniformly continuous if f is both left and right
ω-uniformly continuous.

Remark 3.3. (1) If we consider a topological group G as a uniform space (G,V l
G) or (G,V r

G ), where V l
G and V r

G are left and
right uniformities, respectively, then Definition 3.1 is equivalent to Definition 2.1.

(2) ω-Uniformly continuous � uniformly continuous by Remark 2.7.

According to the definitions, one can easily obtain the following results.

Theorem 3.4. Let f be a real-valued function defined on a topological group. Then

(1) if f is left (resp. right) uniformly continuous, then f is left (resp. right) ω-uniformly continuous;
(2) if f is uniformly continuous, then f is ω-uniformly continuous.

Recall that a topological space X is a P -space if every Gδ-set in X is open. Similarly, a P -group is a topological group
whose underlying space is a P -space.

Theorem 3.5. Let f be a real-valued function defined on a P -group G. Then

(1) f is left (resp. right) uniformly continuous if and only if f is left (resp. right) ω-uniformly continuous;
(2) f is uniformly continuous if and only if f is ω-uniformly continuous.

The following theorem gives a characterization of left or right ω-uniformly continuous functions on a topological group.

Theorem 3.6. Let f be a real-valued function defined on a topological group G. The following are equivalent.

(1) f is left (resp. right) ω-uniformly continuous;
(2) there exists a countable family U f ⊆ Ns(G, e) satisfying that for every point x ∈ G and ε > 0, there exists U ∈ U f such that

| f (x) − f (y)| < ε whenever x−1 y ∈ U (resp. yx−1 ∈ U ).

Theorem 3.7. Let G be a topological group. Every (resp. bounded) continuous real-valued function on G is left ω-uniformly continuous
if and only if every (resp. bounded) continuous real-valued function on G is right ω-uniformly continuous.

4. ω-Uniform continuity and RRR-factorizable topological groups

In this section, we apply the concept of ω-uniform continuity into studying the class of R-factorizable topological groups.
Kister’s property U is defined in Section 1. Comfort and Ross [2] called that a topological group G has property BU if each
bounded continuous real-valued function on G is uniformly continuous.

Definition 4.1. A topological group G has property ω-U (resp. property Bω-U ) if each (resp. bounded) continuous real-valued
function on G is ω-uniformly continuous.
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Remark 4.2. (1) The uniform structure on G should be taken to be either the left or right uniform structure. It often happens
that these structures do not coincide. Nevertheless, according to Theorem 3.7, the definitions of properties ω-U and Bω-U
are unambiguous.

(2) According to the definitions of properties ω-U and Bω-U and Theorem 3.5, every topological group with property U
(resp. BU) has property ω-U (resp. Bω-U ).

It is well known that a topological group has property BU if and only if it has property U [2, Theorem 2.8].

Theorem 4.3. A topological group has property Bω-U if and only if it has property ω-U .

Proof. It is obvious that property ω-U implies property Bω-U . Suppose that a topological group G has property Bω-U and
let f be a continuous real-valued function on G . Thus, the bounded continuous function (−n) ∨ f ∧ n must be ω-uniformly
continuous for all n ∈ N. Using this fact and Theorem 3.6, one can easily obtain that f is ω-uniformly continuous, thus
G has property ω-U . �
Theorem 4.4. Every Lindelöf topological group has property ω-U .

Proof. Let G be a Lindelöf topological group. According to Theorem 3.7 and Definition 4.1, it suffices to show that every
continuous real-valued function f on G is left ω-uniformly continuous. Since G is Lindelöf, for each n ∈ N one can easily
find a family U f ,n = {V j | j ∈ ω} ⊆Ns(G, e) and a subset A f ,n = {h j | j ∈ ω} ⊆ G satisfying that:

(i) G = ⋃
j∈ω h j V j ;

(ii) f (h j V 2
j ) ⊆ ( f (h j) − 1

n , f (h j) + 1
n ) for each j ∈ ω.

Put U f = ⋃
n∈N U f ,n . We shall show that U f satisfies the condition (2) in Theorem 3.6, which implies that f is left

ω-uniformly continuous. It is obvious that |U f | � ω and U f ⊆ Ns(G, e). Let h ∈ G and ε > 0. There is n0 ∈ N such that
1

n0
< ε

2 . According to (i) there exists j0 ∈ ω such that h ∈ h j0 V j0 , where h j0 ∈ A f ,n0 and V j0 ∈ U f ,n0 ⊆ U f . From (ii) it
follows that

f (hV j0) ⊆ f
(
h j0 V 2

j0

) ⊆
(

f (h j0) − 1

n0
, f (h j0) + 1

n0

)
⊆

(
f (h j0) − ε

2
, f (h j0) + ε

2

)
,

that is,
∣∣ f (h) − f (y)

∣∣ �
∣∣ f (h) − f (h j0)

∣∣ + ∣∣ f (h j0) − f (y)
∣∣ <

ε

2
+ ε

2
= ε,

whenever h−1 y ∈ V j0 . �
Corollary 4.5. Every subgroup of a topological group with a countable network has property ω-U , in particular, so does every subgroup
of a second-countable topological group.

Remark 4.6. “Property ω-U ” in Theorem 4.4 and Corollary 4.5 cannot be replaced by “property U ”. For instance, the group
(R,+) with the usual topology is second-countable, but it is well known that not all continuous real-valued functions on
(R,+) are uniformly continuous.

A topological group G is said to be ω-narrow (i.e., ℵ0-bounded [4]) if for each neighborhood V of the identity in G , there
exists a countable subset M ⊆ G such that G = M V .

Lemma 4.7. ([1, Corollary 3.4.19]) Let H be an ω-narrow topological group. Then for every open neighborhood U of the identity in H,
there exists a continuous homomorphism π of H onto a second-countable topological group G such that π−1(V ) ⊆ U , for some open
neighborhood V of the identity in G.

Lemma 4.8. Let H be an ω-narrow topological group and f : H → R be either left or right ω-uniformly continuous. Then there exist a
continuous homomorphism π : H → K onto a second-countable topological group K and a continuous function p : K → R such that
f = p ◦ π .

Proof. Suppose that f is left ω-uniformly continuous on H . According to Theorem 3.6, there exists a countable family
U f ⊆ Ns(H, e) satisfying that for every point x ∈ H and ε > 0, there exists V ∈ U f such that | f (x) − f (y)| < ε whenever
x−1 y ∈ V .



Author's personal copy

2716 L.-H. Xie, S. Lin / Topology and its Applications 159 (2012) 2711–2720

Since H is ω-narrow, according to Lemma 4.7, for each V ∈ U f there exists a continuous homomorphism πV of H onto
a second-countable topological group G V such that π−1

V (U ) ⊆ V , for some open neighborhood U of the identity in G V . Let
π = �V ∈U f

πV be the diagonal product of the family {πV | V ∈ U f }.
It is obvious that π(H) is a second-countable topological group, since

∏
V ∈U f

G V is second-countable.

Claim. f (h1) = f (h2) for all h1,h2 ∈ H satisfying π(h1) = π(h2).

Indeed, assume to the contrary, and choose h1,h2 ∈ H and ε > 0 such that

π(h1) = π(h2) and f (h2) /∈ (
f (h1) − ε, f (h1) + ε

)
.

By the property of U f , for h1 and ε there exists Vh1,ε ∈ U f such that | f (h1) − f (y)| < ε whenever h−1
1 y ∈ Vh1,ε , which is

equivalent to f (h1 Vh1,ε) ⊆ ( f (h1) − ε, f (h1) + ε). Therefore, there exists an open neighborhood U of the identity in G Vh1,ε

such that π−1
Vh1,ε

(U ) ⊆ Vh1,ε by the property of πVh1,ε
. Take an open neighborhood W of the identity in G Vh1,ε

such that

W 2 ⊆ U . Put g = πVh1,ε
(h1), then g = πVh1,ε

(h2) by π(h1) = π(h2), and

h2 ∈ π−1
Vh1,ε

(gW ) = π−1
Vh1,ε

(g)π−1
Vh1,ε

(W )

= h1π
−1
V h1,ε (e)π−1

Vh1,ε
(W ) ⊆ h1π

−1
Vh1,ε

(W )π−1
Vh1,ε

(W )

= h1π
−1
Vh1,ε

(
W 2) ⊆ h1π

−1
Vh1,ε

(U ) ⊆ h1 Vh1,ε,

which implies that

f (h2) ∈ f (h1Vh1,ε) ⊆ (
f (h1) − ε, f (h1) + ε

)
.

This contradiction completes the proof of the claim.

From the claim it follows that there is a function p : π(H) → R such that f = p ◦ π . It remains to prove that p is
continuous.

Take any ε > 0, g ∈ π(H) and choose a point h ∈ H such that g = π(h). According to f = p ◦ π and the property of U f
there exists Vh,ε ∈ U f such that

f (hVh,ε) ⊆ (
f (h) − ε, f (h) + ε

) = (
p(g) − ε, p(g) + ε

)
.

By the property of πVh,ε
above, there is an open neighborhood U containing the identity in G Vh,ε

such that π−1
Vh,ε

(U ) ⊆ Vh,ε .

Choose an open neighborhood W of the identity in G Vh,ε
such that W 2 ⊆ U . Put

O = π(H) ∩
(

W ×
∏

V ∈U f \{Vh,ε}
G V

)
.

We claim that p(g O ) ⊆ (p(g) − ε, p(g) + ε), which implies that p is continuous.
In fact, since gVh,ε

= πVh,ε
(h),

p(g O ) ⊆ f
(
π−1(g O )

)

= f

(
π−1

(
π(H) ∩

(
gVh,ε

W ×
∏

V ∈U f \{Vh,ε}
G V

)))

= f
(
π−1

Vh,ε
(gVh,ε

W )
) ⊆ f

(
hπ−1

Vh,ε
(U )

) ⊆ f (hVh,ε)

⊆ (
f (h) − ε, f (h) + ε

) = (
p(g) − ε, p(g) + ε

)
.

This completes the proof when f is left ω-uniformly continuous.
Similarly, one can easily prove the result when f is right ω-uniformly continuous. �
The following is a main result in this section.

Theorem 4.9. A topological group H is R-factorizable if and only if it is an ω-narrow group with property ω-U .
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Proof. The sufficiency is obtained by Lemma 4.8. Conversely, suppose that H is an R-factorizable topological group. Then
H is ω-narrow [8, Lemma 2.2], so that it remains to show that H has property ω-U . Take any continuous real-valued f
on H . Since H is R-factorizable, there exist a continuous homomorphism π : H → K onto a second-countable topological
group K and a continuous function p : K → R such that f = p ◦ π . Let B be a countable local base of the identity in K .
Put U f = {π−1(U ) | U ∈ B}. One can easily verify that U f is a countable family of open neighborhoods of the identity in H
and satisfies that for every point x ∈ H and ε > 0, there exists Ux,ε ∈ U f such that | f (x) − f (y)| < ε whenever x−1 y ∈ Ux,ε ,
which implies that the function f is left ω-uniformly continuous by Theorem 3.6. From Theorem 3.7 it follows that H has
property ω-U . �

Since there is a topological group G which is ω-narrow but not R-factorizable [1, Example 8.2.1], from Theorem 4.9 it
follows that there exists a continuous function on G , which is not ω-uniformly continuous.

Corollary 4.10. ([1, 8.1.b]) If H is an ω-narrow topological group with property U , then H is R-factorizable.

It is well known that every Lindelöf topological group is ω-narrow [1, Proposition 3.4.6]. According to Theorems 4.3
and 4.9, the following result is obvious.

Corollary 4.11. ([10, Theorem 5.5]) Every Lindelöf topological group is R-factorizable.

Since every totally bounded topological group is R-factorizable [8, Corollary 1.14], the following result is obtained by
Theorem 4.9.

Corollary 4.12. Every totally bounded topological group has property ω-U .

Remark 4.13. “Property ω-U ” in Corollary 4.12 cannot be replaced by “property U ”, since every totally bounded topological
group with property U is pseudocompact [2, Theorem 2.7].

Recall that a space X is said to be pseudo-ω1-compact if every locally finite (equivalently, discrete) family of open sets
in X is countable.

Corollary 4.14. Let G be a topological group with property U . Then

(1) G is pseudo-ω1-compact if and only if it is R-factorizable;
(2) the continuous homomorphic image of G is R-factorizable if G is ω-narrow.

Proof. (1) It was proved that G is pseudo-ω1-compact if and only if it is R-factorizable when G is a P -group [11, Theo-
rem 4.16]. Thus, we can assume that G is not a P -group and has property U .

Sufficiency. In [2, Theorem 2.2], it was proved that if a topological group has property U , then it is either totally bounded
or a P -group. Thus G is totally bounded. According to the fact that a totally bounded topological group with property U is
pseudocompact [2, Theorem 2.7], G is pseudo-ω1-compact.

Necessity. Suppose that G is pseudo-ω1-compact and has property U . According to [1, Proposition 3.4.31] and Remark 4.2,
G is ω-narrow and has property ω-U . Thus G is R-factorizable by Theorem 4.9.

(2) Suppose that G is an ω-narrow topological group with property U . It follows that G is R-factorizable by Theo-
rem 4.9. Since it is well known that a continuous homomorphic image of every R-factorizable P -group is R-factorizable
[11, Corollary 5.9], it is enough to prove that the continuous homomorphic image of G is R-factorizable when G is not a
P -group.

In fact, in the sufficiency of the proof of (1), we have shown that G is pseudocompact when G is not a P -group with
property U . Since a continuous homomorphic image of a pseudocompact (resp. an ω-narrow) topological group is pseudo-
compact (resp. ω-narrow [1, Proposition 3.4.2]) and every pseudocompact topological group has property U [2, Theorem 1.5],
from Remark 4.2 and Theorem 4.9 it follows that the continuous homomorphic image of G is R-factorizable. �
Corollary 4.15. ([9, Theorem 3.8]) Every locally finite family of open subsets of a locally connected R-factorizable topological group G
is countable.

Proof. Suppose that there exists an uncountable locally finite family of open subsets of G . Then there exists an uncount-
able discrete family {Oα | α < ω1} of non-void open subsets of G [7, Lemma 1]. Since G is Hausdorff, it is completely
regular. For every α < ω1 pick a point xα ∈ Oα and define a continuous function fα : G → [0,1] such that fα(xα) = 1
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and fα(G \ Oα) = {0}. Then f = ∑
α<ω1

fα is continuous. Since G is R-factorizable, f is ω-uniformly continuous by Theo-
rem 4.9. Since G is locally connected, there exists a countable family V of non-void connected open neighborhoods at the
identity of G satisfying that for every point x ∈ G there exists V ∈ V such that | f (x) − f (y)| < 1 whenever y ∈ xV . Then
for each β < ω1, there exists Vβ ∈ V such that xβ Vβ ⊆ ⋃

α<ω1
Oα . Since xβ Vβ is connected and {Oα | α < ω1} is discrete,

xβ Vβ ⊆ O β . Since V is countable, there are V 0 ∈ V and an uncountable subset A ⊆ ω1 such that xα V 0 ⊆ Oα for each α ∈ A.
Then xα V 0 ∩ xβ V 0 = ∅ whenever α,β ∈ A, α �= β . Let W be an open symmetric neighborhood of the identity of G such that
W 2 ⊆ V 0. The group G is ω-narrow by Theorem 4.9. Therefore there exists a countable subset K ⊆ G such that G = W K .
Since A is uncountable, one can find a point x ∈ K and distinct α,β ∈ A such that {xα, xβ} ⊆ W x. Then x−1

β xα ∈ W 2 ⊆ V 0,
that is, xα ∈ xβ V 0, a contradiction with xα V 0 ∩ xβ V 0 = ∅. �
Theorem 4.16. Let G be a topological group with property ω-U (resp. property Bω-U ). If N is a closed normal subgroup of G, then the
quotient group G/N has property ω-U (resp. property Bω-U ).

Proof. Let p : G → G/N be a quotient homomorphism. Then p is an open continuous homomorphism [1, Theorem 1.5.1].
Take any (resp. bounded) continuous real-valued function f on G/N . Then f ◦ p is a (resp. a bounded) continuous real-
valued function on G . Since G has property ω-U (resp. Bω-U ), f ◦ p is ω-uniformly continuous by Definition 4.1. According
to Theorem 3.6, there exists a countable family U f ◦p ⊆ Ns(G, e) satisfying that for every x ∈ G and ε > 0, there exists
Ux,ε ∈ U f ◦p such that | f ◦ p(x) − f ◦ p(y)| < ε whenever x−1 y ∈ Ux,ε . Put U f = {p(U ) | U ∈ U f ◦p}. Since p is an open
homomorphism, one can easily verify that U f satisfies the condition (2) in Theorem 3.6, which implies that f is (left)
ω-uniformly continuous. So, G/N has property ω-U (resp. Bω-U ) by Theorem 3.7. �

Since the continuous homomorphic image of an ω-narrow group is ω-narrow [1, Proposition 3.4.2], according to Theo-
rems 4.16 and 4.9 one can easily obtain the following result.

Corollary 4.17. ([9, Theorem 3.10]) An open continuous homomorphic image of an R-factorizable topological group is R-factorizable.

5. ω-Uniform continuity and m-factorizable groups

A topological group G is called m-factorizable [1] (resp. M -factorizable [1]) if for every continuous function f : G → M to
a metrizable space M , there exist a continuous homomorphism p : G → K onto a second-countable (resp. first-countable)
topological group K and a continuous function g : K → M such that f = g ◦ p.

The following question is posed by A.V. Arhangel’skiı̌ and M. Tkachenko in 2008. It is affirmatively answered in this
section.

Question 5.1. ([1, Open Problem 8.4.4]) Is any quotient group of an M -factorizable topological group M -factorizable?

Definition 5.2. Let G be a topological group and (M,ρ) be a metric space. A function f : G → M is left (resp. right) ω-
uniformly continuous if, for every ε > 0, there exists a countable family U ⊆ Ns(G, e) satisfying that for every point x ∈ G ,
there exists U ∈ U such that ρ( f (x), f (y)) < ε whenever x−1 y ∈ U (resp. whenever yx−1 ∈ U ).

Definition 5.3. Let G be a topological group and (M,ρ) be a metric space. A function f : G → M is ω-uniformly continuous
if f is both left and right ω-uniformly continuous.

The invariance number inv(G) [1] of a semitopological group G is countable (notation: inv(G) � ω) if for each open
neighborhood U of the neutral element e in G there exists a countable family γ of open neighborhoods of e such that
for each x ∈ G , there exists V ∈ γ satisfying xV x−1 ⊆ U . A topological group G such that inv(G) � ω are also called ω-
balanced [1].

Lemma 5.4. ([1, Theorem 3.4.18]) Let H be an ω-balanced topological group. Then, for every open neighborhood U of the identity
in H, there exists a continuous homomorphism π from H onto a metrizable topological group G such that π−1(V ) ⊆ U , for some open
neighborhood V of the identity in G.

It is well known that a topological group G is metrizable if and only if G is first-countable [1, Theorem 3.3.12]. In the
proof of Lemma 4.8, it does not use the order property of R, but uses the metrizable property of R, so, making a simple
change, one can easily obtain the following result by Lemmas 4.7 and 5.4.

Lemma 5.5. Let G be an ω-narrow (resp. an ω-balanced) topological group and f : G → M to a metric space (M,ρ) be either left
or right ω-uniformly continuous. Then there exist a continuous homomorphism p : G → K onto a second-countable (resp. a first-
countable) topological group K and a continuous function h : K → M such that f = h ◦ p.
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The following result is obvious.

Lemma 5.6. Let G be a topological group and (M,ρ) be a metric space. Then every continuous function from G into M is left
ω-uniformly continuous if and only if every continuous function from G into M is right ω-uniformly continuous.

According to Lemma 5.6, the following definition is unambiguous.

Definition 5.7. A topological group G has property strong ω-U if each continuous function f : G → M to a metric space
(M,ρ) is ω-uniformly continuous.

Every m-factorizable topological group is ω-narrow [5]. According to Lemmas 5.5 and 5.6, one can easily obtain the
following result by making a simple modification of the proof of Theorem 4.9.

Theorem 5.8. A topological group G is m-factorizable if and only if it is ω-narrow and has property strong ω-U .

Lemma 5.9. ([1, Theorem 3.4.22]) A topological group G is ω-balanced if and only if it is topologically isomorphic to a subgroup of a
topological product of metrizable topological groups.

Lemma 5.10. Every M -factorizable topological group is ω-balanced.

Proof. Let G be an M -factorizable topological group. To prove that G is ω-balanced it is enough to show that G is topo-
logically isomorphic to a subgroup of a topological product of metrizable topological groups by Lemma 5.9.

Since G is a Hausdorff topological group, G is completely regular. Let γ = { fα | α ∈ Λ} be the family of all continuous
real-valued functions on G . Then γ can separate points from closed subsets of G . Since G is M -factorizable, there exist a
continuous homomorphism pα : G → Kα onto a first-countable topological group K and a continuous function gα : Kα → R
such that fα = gα ◦ pα for each α ∈ Λ. Since every first-countable topological group is metrizable, each Kα is metrizable.
Put δ = {pα | α ∈ Λ}. We show that δ can separate points from closed subsets of G . Take any point x and closed subset F of
G such that x /∈ F . Then there exists fα ∈ γ such that fα(x) /∈ fα(F ). We shall prove that pα(x) /∈ pα(F ), which implies that
δ can separate points from closed subsets of G . Indeed, assume to the contrary, then pα(x) ∈ pα(F ), thus

fα(x) = gα

(
pα(x)

) ∈ gα

(
pα(F )

) ⊆ gα

(
pα(F )

) = fα(F )

according to fα = gα ◦ pα and the continuity of gα . This is a contradiction. Therefore �α∈Λ pα : G → ∏
α∈Λ Kα is a topolog-

ically isomorphic embedding, where �α∈Λ pα is a diagonal product of the family δ. �
Making a simple modification of the proof of Theorem 4.9, one can easily obtain the following result according to

Lemmas 5.5, 5.6 and 5.10.

Theorem 5.11. A topological group G is M -factorizable if and only if it is ω-balanced and has property strong ω-U .

The following result is obvious.

Lemma 5.12. An ω-balanced topological group is preserved by an open continuous homomorphism.

The following theorem gives a positive answer to Question 5.1.

Theorem 5.13. An M -factorizable topological group is preserved by a quotient homomorphism.

Proof. Let G be an M -factorizable group and p : G → K be a quotient homomorphism, where K is a topological group.
It is well known that f is open [1, Theorem 1.5.1]. Therefore K is ω-balanced by Lemmas 5.10 and 5.12. Let (M,ρ) be a
metric space. According to Lemma 5.6 and Theorem 5.11, it is enough to show that every continuous function f : K → M is
left ω-uniformly continuous. Since G is M -factorizable, f ◦ p is ω-uniformly continuous by Theorem 5.11. Take any ε > 0.
According to Definition 5.2 there exists a countable family μ ⊆ Ns(G, e) satisfying that for every point x ∈ G , there exists
U ∈ μ such that ρ( f (p(x)), f (p(y))) < ε whenever x−1 y ∈ U . Put γ = {p(U ) | U ∈ μ}. Then γ is a countable family of open
symmetric neighborhoods of the identity in K . For every point x ∈ K take a point z ∈ G such that x = p(z). Then there exists
U ∈ μ such that ρ( f (p(z)), f (p(y))) < ε whenever z−1 y ∈ U , that is, there exists p(U ) ∈ γ such that ρ( f (x), f (x′)) < ε
whenever z−1x′ ∈ p(U ), which implies that f is left ω-uniformly continuous. This completes the proof. �
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