

SOME PROPERTIES ON X0-WEAK BASES

CHUAN LIU, SHOU LIN*, AND JINJIN LI

ABSTRACT. In this paper, we characterize an \aleph_0 -weakly first-countable space as a quotient, countable-to-one image of a first-countable space. We also discuss metrizability and mapping theorems on \aleph_0 -weak bases, and pose some questions.

1. INTRODUCTION

Arhangel'skii [1] introduced the concept of weak bases in 1966 and many interesting results related to weak bases, in particular, weakly firstcountable spaces, have been obtained. As a generalization of weakly firstcountability, Sirois-Dumais [35] introduced weakly quasi-first-countable spaces and proved that X is a weakly quasi-first-countable space if and only if X is a quotient, frontier-countable image of a metric space. Svetlichny [36] called a weakly quasi-first-countable space by an \aleph_0 -weakly first-countable space and proved that there is a non-metrizable, \aleph_0 -weakly first-countable topological group. In 99' Ohio University topology seminar, Arhangel'skiĭ called a weakly quasi-first-countable space by a σ weakly first-countable space and posed some problems. The authors [21] introduced the concept of general \aleph_0 -weak bases and proved a space X has a point-countable \aleph_0 -weak base if and only if X is a quotient, countable to-one image of a metric space. In this paper, we discuss some properties on \aleph_0 -weak bases and pose some questions.

Throughout this paper, all spaces are assumed to be T_2 , all maps are continuous and onto. Denote real, irrational and rational numbers by \mathbb{R}, \mathbb{P} and \mathbb{Q} , respectively. We refer the reader to [7, 11] for notations and terminology not explicitly given here.

²⁰¹⁰ Mathematics Subject Classification. 54C10, 54E40, 54D55, 54E20.

Key words and phrases. \aleph_0 -weak bases, weak bases, cs^* -networks, countable-to-one maps, quotient maps, sequential spaces, κ -Fréchet-Urysohn spaces, metrizable.

^{*} The corresponding author. This project was supported by NNSF of China (No. 10971185, 10971186).

^{©2011} Topology Proceedings.

¹⁹⁵

2. Main Results

Definition 1. Let \mathcal{B} be a family of subsets of a space X. \mathcal{B} is said to be an \aleph_0 -weak base for X if $\mathcal{B} = \bigcup \{ \mathcal{B}_x(n) : x \in X, n \in \mathbb{N} \}$ satisfies

- (1) For each $x \in X, n \in \mathbb{N}$, $\mathcal{B}_x(n)$ is closed under finite intersections and $x \in \cap \mathcal{B}_x(n)$.
- (2) A subset U of X is open if and only if whenever $x \in U$ and $n \in \mathbb{N}$, there exists a $B_x(n) \in \mathcal{B}_x(n)$ such that $B_x(n) \subset U$.

For each $x \in X$, $\bigcup_{n \in \mathbb{N}} \mathcal{B}_x(n)$ is called an \aleph_0 -weak base at x. X is called \aleph_0 -weakly first-countable [36] or weakly quasi-first-countable in the sense of Sirois-Dumais [35] if $\mathcal{B}_x(n)$ is countable for each $x \in X$, $n \in \mathbb{N}$.

If $\mathcal{B}_x(n) = \mathcal{B}_x(1)$ for each $n \in \mathbb{N}$ in the definition of \aleph_0 -weak bases, then \mathcal{B} is said to be a *weak base* for X [1]. X is called *weakly first-countable* or *g-first-countable* in the sense of Arhangel'skiĭ [1] if $\mathcal{B}_x(1)$ is countable for each $x \in X$.

A space X is called a *sequential space* if each sequential open subset of X is open [7].

Lemma 2. [35] Every \aleph_0 -weakly first-countable space is sequential.

The following lemma gives the relationship between weakly first-countability and \aleph_0 -weakly first-countability. Call a subspace of a space X a fan (at a point $x \in X$) if it consists of a point x, and a countably infinite family of disjoint sequences converging to x. Call a subset of a fan a diagonal if it is a sequence meeting infinitely many of the sequences converging to x and converges to some point in the fan. A space X is an α_4 -space [2] if every fan at x of X has a diagonal converging to x.

Lemma 3. [19] A space X is weakly first-countable if and only if X is an \aleph_0 -weakly first-countable, α_4 -space.

A space is strongly Fréchet-Urysohn (= strongly Fréchet = countably bisequential [28]) if whenever $x \in \bigcap_{n \in \mathbb{N}} \overline{A_n}$ with each $A_{n+1} \subset A_n$ then one may pick $x_n \in A_n$ such that $x_n \to x$. Every strongly Fréchet space is an α_4 -space, and every Fréchet-Urysohn (= Fréchet), weakly first-countable space is first-countable [16]. By the lemma above, we have the following.

Corollary 4. A space X is first-countable if and only if X is a strongly Fréchet-Urysohn, \aleph_0 -weakly first-countable space.

Proposition 5. Suppose that each point of a space X is a G_{δ} -set and X is \aleph_0 -weakly first-countable. Then X is weakly first-countable if and only if it contains no closed copy of the countable sequential fan S_{ω} .

Proof. S_{ω} is not weakly first-countable. On the other hand, X is a sequential space in which every point is a G_{δ} -set. Then X is an α_4 -space if it contains no closed copy of S_{ω} [30]. By Lemma 3, X is weakly first-countable.

Arhangel'skiĭ asked the following question: Is \aleph_0 -weakly first-countable topological group metrizable? Svetlichny [36] gave a negative answer to the question, but we have the following.

For a Tychonoff space X, let α be a family of closed subsets of X. $C_{\alpha}(X)$ is the continuous real function space of X with the set-open topology [6, 27]. $C_{\alpha}(X)$ is always a topological group. There are two well-studied examples of set-open topologies, which is the space $C_p(X)$ with the point-open topology and the space $C_k(X)$ with the compact-open topology.

Corollary 6. If the space $C_{\alpha}(X)$ with the set-open topology is \aleph_0 -weakly first-countable, then it is metrizable.

Proof. Since $C_{\alpha}(X)$ is \aleph_0 -weakly first-countable, it is sequential by Lemma 2. Then it is strongly Fréchet-Urysohn [10]. By Corollary 4, $C_{\alpha}(X)$ is first-countable, hence metrizable [27].

Question 7. Let X be \aleph_0 -weakly first-countable and contain no closed copy of S_{ω} , is X weakly first-countable?

Question 8. (A. Arhangel'skii) Let X be compact and \aleph_0 -weakly first-countable, is X weakly first-countable?

Let $f : X \to Y$ be a map. f is called *subsequence-covering* [18] if whenever L is a convergent sequence in Y there is a compact subset K in X such that f(K) is a subsequence of L.

Lemma 9. [17, 18] Let $f : X \to Y$ be a map, and X a sequential space. Then f is quotient if and only if Y is a sequential space and f is subsequence-covering.

Theorem 10. The following are equivalent for a space X.

- (1) X is an \aleph_0 -weakly first-countable.
- (2) X is a quotient, countable-to-one image of a first-countable space.
- (3) X is a quotient, countable-to-one image of a weakly first-countable space.

Proof. (1) \Rightarrow (2). Assume X is \aleph_0 -weakly first-countable, and let $\{C_x(n,m) : x \in X, n, m \in \mathbb{N}\}$ be an \aleph_0 -weak base such that for $x \in X$, $C_x(n,m+1) \subset C_x(n,m)$ for each $n, m \in \mathbb{N}$. We rewrite $X = \{x_\alpha : \alpha \in \Gamma\}$, let $Y = \{y_\alpha : \alpha \in \Gamma\}$ and $X \cap Y = \emptyset$. Let $Z = X \cup Y$, fix $n \in \mathbb{N}$, we endow Z with a topology τ_n as follows: each point in X is open; for $y_\alpha \in Y$, the basic neighborhoods are $\{y_\alpha\} \cup (C_{x_\alpha}(n,m) \setminus \{x_\alpha\}) \ (m \in \mathbb{N})$. It is easy to see that (Z, τ_n) is first-countable.

Let $M = \bigoplus_{n \in \mathbb{N}} (Z, \tau_n)$. Then M is first-countable. Define $f : M \to X$ by $f(z) = x_{\alpha}$ if $z = x_{\alpha}$ or $z = y_{\alpha}$. It is not difficult to check that f is continuous, countable-to-one and onto. We prove that f is subsequencecovering. Let L be a sequence converging to $x_{\alpha} \in X$, then there are $n \in \mathbb{N}$ and a subsequence $L_1 \subset L$ such that L_1 is eventually in each $C_{x_{\alpha}}(n,m)$ for $m \in \mathbb{N}$ [34]. By the definition of τ_n , L_1 is still a sequence converging to $y_{\alpha} \in Z$ with $f(L_1) = L_1$ and $f(y_{\alpha}) = x_{\alpha}$. Hence f is a subsequence-covering map. Since X is a sequential space, f is a quotient map by Lemma 9.

$$(2) \Rightarrow (3) \Rightarrow (1)$$
 are trivial.

Question 11. Let X be an \aleph_0 -weakly first-countable space. Is X a quotient, countable-to-one image of a regular first-countable space?

Since the composition of two quotient, countable-to-one maps is still a quotient, countable-to-one map, we have the following.

Corollary 12. The \aleph_0 -weakly first-countability is preserved by quotient, countable-to-one maps.

Lemma 13. [20] Let $f : X \to Y$ be a closed map from a normal Fréchet-Urysohn space X to a space Y. If Y is \aleph_0 -weakly first-countable, then the boundary $\partial f^{-1}(y)$ is σ -compact for each $y \in Y$. In particular, the ω_1 -fan S_{ω_1} is not \aleph_0 -weakly first-countable.

The \aleph_0 -weakly first-countability may not be preserved by perfect mappings. In fact, Gruenhage, Michael and Tanaka [12, Example 9.8] constructed a space Y that is a perfect image of a weakly first-countable space. Since Y contains a closed copy of S_{ω_1} , Y is not \aleph_0 -weakly first-countable by Lemma 13.

Arhagel'skiĭ asked the following question in 99' Ohio University topology seminar.

Question 14. Let X be a closed image of a separable metric space with $|X| \leq \omega$, is X \aleph_0 -weakly first-countable?

We shall give a negative answer to the above question.

Example 15. There is a countable, closed image of a separable metric space that is not \aleph_0 -weakly first-countable.

Proof. Let $M = (\mathbb{Q} \times (\mathbb{Q} \setminus \{0\})) \cup (\mathbb{P} \times \{0\})$, endow M with usual topology, and let X be the quotient space by identifying $(\mathbb{P} \times \{0\})$ to be a point ∞ . The quotient map from M onto X is a closed map. Then X is a closed image of a separable metric space with $|X| \leq \omega$. If X is \aleph_0 -weakly first-countable, the boundary of $f^{-1}(\infty)$ is σ -compact by Lemma 13, this is a contradiction since \mathbb{P} is not σ -compact. \Box

Recall some basic concepts. Let \mathcal{P} be a family of subsets of a space X. Then \mathcal{P} is called a *k*-network [11] for X if for any compact set K and for any open set U with $K \subset U, K \subset \cup \mathcal{P}' \subset U$ for some finite $\mathcal{P}' \subset \mathcal{P}$. \mathcal{P} is called a cs^* -network [9] for X if for any sequence L converging to $x \in X$ and for any open set U with $x \in U$, there exist a subsequence L' of Land a $P \in \mathcal{P}$ such that $L' \cup \{x\} \subset P \subset U$. A space is an \aleph_0 -space (resp. \aleph -space) if it is a regular space with a countable (resp. σ -locally finite) k-network.

Lemma 16. [34] Every \aleph_0 -weak base for a space is a cs^* -network.

It was proved [24] that a cosmic space (= a regular space with a countable network) with a point-countable weak base has a countable weak base. But, a cosmic space with a point-countable \aleph_0 -weak base need not have a countable \aleph_0 -weak base. Since every regular space with a countable cs^* -network is an \aleph_0 -space [9], every regular space with a countable \aleph_0 weak base is an \aleph_0 -space by Lemma 16. Under the assumption that there exists a σ' -set, Sakai [32] constructed a cosmic space X that is a quotient, finite-to-one image of a metric space, which is not an \aleph_0 -space. Since a quotient, finite-to-one image of a metric space has a point-countable \aleph_0 weak base [21], the space X is not an \aleph_0 -space, hence it has no countable \aleph_0 -weak base.

Let \mathcal{P} be a family of subsets of a space X. \mathcal{P} is called *closure*preserving if $\overline{\cup \mathcal{P}'} = \cup \{\overline{\mathcal{P}}: P \in \mathcal{P}'\}$ for each $\mathcal{P}' \subset \mathcal{P}$. \mathcal{P} is called *hereditarily closure-preserving* (abbr. *HCP*) if every family $\{H(P): P \in \mathcal{P}\}$ with $H(P) \subset P \in \mathcal{P}$ is closure-preserving. \mathcal{P} is called *point-discrete* (i.e., *weakly hereditarily closure-preserving* in sense of Burke, Engelking and Lutzer [4]) if each set $\{x(P): P \in \mathcal{P}\}$ with $x(P) \in P \in \mathcal{P}$ is a closed discrete subset of X. \mathcal{P} is called *compact-finite* if every compact set of X intersects only finitely many members of the family \mathcal{P} .

Lemma 17. Let \mathcal{P} be a point-discrete family of a space X.

- (1) If there is a non-trivial convergent sequence L such that L is eventually in each element in \mathcal{P} , then \mathcal{P} is finite.
- (2) If X is Fréchet-Urysohn, then \mathcal{P} is HCP [15].

Proof. We show that the (1) holds. If \mathcal{P} is not finite, there exists an infinite subset $\{P_n : n \in \mathbb{N}\} \subset \mathcal{P}$. Since L is eventually in each P_n , there is a subsequence $\{x_n\}_{n\in\mathbb{N}} \subset L$ such that $x_n \in P_n$ for each $n \in \mathbb{N}$. Then the set $\{x_n : n \in \mathbb{N}\}$ is closed discrete in X, a contradiction. \Box

Theorem 18. The following are equivalent for a regular space X.

- (1) X has a σ -discrete \aleph_0 -weak base.
- (2) X has a σ -locally finite \aleph_0 -weak base.

- (3) X has a σ -HCP \aleph_0 -weak base.
- (4) X is an \aleph_0 -weakly first-countable space with a σ -HCP k-network.
- (5) X has a σ -compact-finite \aleph_0 -weak base consisting of closed subsets.

Proof. $(1) \Rightarrow (2) \Rightarrow (3), (2) \Rightarrow (5)$ are trivial.

 $(5) \Rightarrow (2)$. Let X have a σ -compact-finite \aleph_0 -weak base consisting of closed subsets. Then X is a sequential space, thus it is a k-space. Every compact-finite family of closed subsets of X is closure-preserving because X is a k-space. Since every closure-preserving and point-finite family of closed subsets is locally finite, every compact-finite family of closed subsets in X is locally finite. Hence, X has a σ -locally finite \aleph_0 -weak base.

 $(3) \Rightarrow (4)$. Let \mathcal{B} be a σ -HCP \aleph_0 -weak base for X. Then \mathcal{B} is a σ -HCP cs^* -network by Lemma 16, thus it is a σ -HCP k-network [9]. Next, we shall prove that X is \aleph_0 -weakly first-countable. Put

$$\mathcal{B} = \bigcup \{ \mathcal{B}_x(n) : x \in X, n \in \mathbb{N} \} = \bigcup_{m \in \mathbb{N}} \mathcal{B}_m,$$

where each $\mathcal{B}_x(n)$ is of the properties in Definition 1 and each \mathcal{B}_m is HCP. Assume that each element in \mathcal{B} is closed in X by the regularity of X. Fix $n \in \mathbb{N}$, a non-isolated point $x \in X$, we prove that $\mathcal{B}_x(n)$ is countable. Since $\mathcal{B}_x(n) = \bigcup_{m \in \mathbb{N}} (\mathcal{B}_m \cap \mathcal{B}_x(n))$, and $\mathcal{B}_m \cap \mathcal{B}_x(n)$ is HCP for each $m \in \mathbb{N}$, so we only need to prove that there is a non-trivial converging sequence L such that L is eventually in each $B \in \mathcal{B}_x(n)$ by Lemma 17.

Since X has a σ -HCP k-network, it is a σ -space, thus each point of X is a G_{δ} -set [11]. There is a sequence $\{U_i\}_{i\in\mathbb{N}}$ of open subsets of X such that $\{x\} = \bigcap_{i\in\mathbb{N}} U_i$ with each $\overline{U}_{i+1} \subset U_i$. Pick $x(B,m) \in U_m \cap B - \{x\}$ for each $m \in \mathbb{N}$ and $B \in \mathcal{B}_m \cap \mathcal{B}_x(n)$. Let

$$M = \{x\} \cup \{x(B,m) : m \in \mathbb{N}, B \in \mathcal{B}_m \cap \mathcal{B}_x(n)\}.$$

Then M is a closed subspace of X and x is the only non-isolated point in M. It is not difficult to see that M has a σ -HCP \aleph_0 -weak base $\{B \cap M : B \in \mathcal{B}\}$. We endow M with a new topology as follows: each point in M except x is open, the neighborhood base of x is $\{B \cap M : B \in \mathcal{B}_x(n)\}$. We denote the new space by M'. By the definition, M' is regular and the topology on M' is finer than the topology on M. So $\{B \cap M : B \in \mathcal{B}_x(n)\}$ is σ -HCP in M', hence M' has a σ -HCP base. Then M' is metrizable [4]. Therefore, there is a non-trivial sequence L converging to x in M'. Since $\{B \cap M : B \in \mathcal{B}_x(n)\}$ is a local base at x in M', L is eventually in each element in $\{B \cap M : B \in \mathcal{B}_x(n)\}$. Hence L is eventually in each $B \in \mathcal{B}_x(n)$. Thus X is \aleph_0 -weakly first-countable.

 $(4) \Rightarrow (1)$. By Lemma 13, X contains no closed copy of S_{ω_1} . Then X is an \aleph -space since a regular space having a σ -HCP k-network is an \aleph -space if it contains no closed copy of S_{ω_1} [14]. It is not difficult to prove that an \aleph_0 -weakly first-countable, \aleph -space has a σ -discrete \aleph_0 -weak base [34].

Since σ -hereditarily closure-preserving k-networks are preserved by closed maps in regular spaces [17], and \aleph_0 -weakly first-countability is preserved by quotient, countable-to-one maps, we have the following.

Proposition 19. In regular spaces, spaces with a σ -locally finite \aleph_0 -weak base are preserved by closed, countable-to-one maps.

It is not difficult to prove that closed and open maps preserve σ -locally-finite \aleph_0 -weak base, but the authors do not know if perfect maps preserve σ -locally-finite \aleph_0 -weak base. A map $f: X \to Y$ is called σ -compact if each $f^{-1}(y)$ is a σ -compact subset in X for each $y \in Y$.

Theorem 20. The following are equivalent for a regular space X.

- (1) X is an image of a locally separable metric space under a closed and σ -compact map.
- (2) X is a Fréchet-Urysohn space with a star-countable \aleph_0 -weak base.
- (3) X is a topological sum of Fréchet-Urysohn spaces each with a countable ℵ₀-weak base.
- (4) X is a Fréchet-Urysohn space with a point-countable ℵ₀-weak base consisting of separable subsets.

Proof. (1) ⇒ (3). Let X be an image of a locally separable metric space under a closed and σ-compact map. Then X is a Fréchet-Urysohn space with a star-countable k-network by [23, Theorem 1.9], and X is an ℵ₀weakly first-countable, ℵ-space by [20, Theorem 2.2]. Thus X is a topological sum of Fréchet-Urysohn and ℵ₀-spaces by [31, Theorem 2.6]. Since every ℵ₀-weakly first-countable, ℵ₀-space has a countable ℵ₀-weak base [21], X is a topological sum of Fréchet-Urysohn spaces each with a countable ℵ₀-weak base.

 $(3) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (1)$. Every point-countable cs^* -network is a k-network for a sequential space [37]. Then X is a Fréchet-Urysohn space with a starcountable k-network by Lemma 16, so X is the image of a locally separable metric space under a closed map f by [23, Theorem 1.9]. By Lemma 13, the boundary $\partial f^{-1}(y)$ is σ -compact for each $y \in Y$. Then X is the image of a locally separable metric space under a closed and σ -compact map by the similar proof in [7, Theorem 4.4.17].

(3) \Rightarrow (4). Since every space with a countable \aleph_0 -weak base is hereditarily separable, it is trivial.

 $(4) \Rightarrow (3)$. Let \mathcal{P} be a point-countable \aleph_0 -weak base consisting of separable subsets. For $x \in X$, by [12, Lemma 2.6], $x \in \operatorname{int}(\operatorname{st}(x, \mathcal{P}))$, hence X is locally separable. By [12, Proposition 8.8], X is a topological sum of \aleph_0 -subspaces since every point-countable \aleph_0 -weak base is a point-countable k-network by the proof of $(2) \Rightarrow (1)$. By [21, Theorem 7], X is a topological sum of Fréchet-Urysohn spaces each with a countable \aleph_0 -weak base.

In [21], we proved that X is an image of a separable metric space under a quotient σ -compact map if and only if X is an image of a separable metric space under a quotient countable-to-one map. But the following is still unknown.

Question 21. Is an image of a separable metric space under a closed σ -compact map an image of a separable metric space under a closed countable-to-one map?

Definition 22. A space X is called a κ -Fréchet-Urysohn space [22] if whenever $x \in \overline{U}$ with U open, there is a sequence $\{x_n\}_{n \in \mathbb{N}} \subset U$ such that $x_n \to x$.

A space X is strongly κ -Fréchet-Urysohn [33] at a point $x \in X$ if for each sequence $\{O_n\}_{n\in\mathbb{N}}$ of decreasing open subsets with $x \in \bigcap_{n\in\mathbb{N}}\overline{O}_n$, there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ converging to x with each $x_n \in O_n$. A space X is strongly κ -Fréchet-Urysohn if it is strongly κ -Fréchet-Urysohn at each point of X.

Every Fréchet-Urysohn space is κ -Fréchet-Urysohn, but need not be strongly κ -Fréchet-Urysohn, for example S_{ω} . It is easy to see that strongly κ -Fréchet-Urysohn is κ -Fréchet-Urysohn. Sakai [33] proved that every κ -Fréchet-Urysohn topological group is strongly κ -Fréchet-Urysohn. In [22], there exists a κ -Fréchet-Urysohn topological group that is not a k-space or has no countable tightness. Hence, a strongly κ -Fréchet-Urysohn space need not be a k-space or have countable tightness.

Lemma 23. [33] Let X be a space and $x \in X$. If X has a countable cs^* -network at x and is strongly κ -Fréchet-Urysohn at x, then the point x has a countable neighborhood base.

Theorem 24. A regular space X is metrizable if and only if X is a strongly κ -Fréchet-Urysohn space with a σ -point-discrete \aleph_0 -weak base.

Proof. Necessity is trivial.

Sufficiency. We first prove that X is a first-countable space. Let $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ be a σ -point-discrete \aleph_0 -weak base, where each \mathcal{B}_n is pointdiscrete. Fix $x \in X$, if x is an isolated point, then X is first-countable at x; otherwise, we shall prove that X has a countable cs^* -network at x,

then X has a countable base at x by Lemma 23. Let $\mathcal{B}_x = \bigcup_{n \in \mathbb{N}} \mathcal{B}_x(n) \subset \mathcal{B}$ be the \aleph_0 -weak base at the non-isolated point x. Put

$$\mathbb{N}_1 = \{k \in \mathbb{N} : \text{there is a non-trivial convergent sequence } L_1 \\ \text{that is eventually in each } B \in \mathcal{B}_x(k) \}.$$

Then $\{\mathcal{B}_x(k) : k \in \mathbb{N}_1\}$ is a cs^* -network at x. In fact, let L be a sequence converging to $x \in U$ with U open. We can assume that L is non-trivial, otherwise, since $x \in \overline{X} - \{x\}$, there exists a non-trivial sequence S converging to x in X by the κ -Fréchet-Urysohn property, then $L \cup S$ is a non-trivial sequence converging to x. There exist an $n_0 \in \mathbb{N}$ and a subsequence $L_1 \subset L$ such that L_1 is eventually in each $B \in \mathcal{B}_x(n_0)$ [34], then $n_0 \in \mathbb{N}_1$. By Definition 1, there exists $B \in \mathcal{B}_x(n_0)$ with $B \subset U$, and L_1 is eventually in B. Thus $\{\mathcal{B}_x(k) : k \in \mathbb{N}_1\}$ is a cs^* -network at x.

For each $n \in \mathbb{N}$ and $k \in \mathbb{N}_1$, the family $\mathcal{B}_n \cap \mathcal{B}_x(k)$ is point-discrete, thus it is finite by Lemma 17. Hence $\mathcal{B}_x(k) = \bigcup_{n \in \mathbb{N}} (\mathcal{B}_n \cap \mathcal{B}_x(k))$ is countable for each $k \in \mathbb{N}_1$. Therefore X has a countable cs^* -network at x, thus X is first-countable at x. At this stage, we have proved that X is firstcountable.

X has a σ -HCP cs^* -network by Lemmas 16 and 17. Thus X has a σ -HCP k-network [9]. Since X is first-countable, it is metrizable [8]. \Box

Note 25. We can not replace "strongly κ -Fréchet-Urysohn" with "Fréchet-Urysohn" in Theorem 24. The sequential fan S_{ω} is a non-metrizable, Fréchet-Urysohn space with a countable \aleph_0 -weak base.

Proposition 26. If $C_p(X)$ has a σ -point-discrete \aleph_0 -weak base, then X is countable.

Proof. In view of the proof of Theorem 24, $\{\mathcal{B}_{\mathbf{0}}(k) : k \in \mathbb{N}_1\}$ is a countable cs^* -network at **0** in $C_p(X)$. Sakai [33] proved that if $C_p(X)$ has a countable cs^* -network at **0**, then X is countable. Hence X is countable. \Box

Note 27. A space with a σ -point-discrete \aleph_0 -weak base need not be a k-space or have countable tightness, in fact, Burke, Engelking and Lutzer [4] constructed a space with a σ -point-discrete base, which is neither k-space nor of countable tightness.

Question 28. Suppose that $C_k(X)$ have a σ -point-discrete \aleph_0 -weak base, is $C_k(X)$ metrizable?

Let \mathcal{P} be a cover of a space X. \mathcal{P} is *cs-regular* [13] if for each sequence $\{x_n\}_{n\in\mathbb{N}}$ converging to x and each open neighborhood U of x, there exists $m \in \mathbb{N}$ such that $\{P \in \mathcal{P} : P \cap T(x,m) \neq \emptyset, P \not\subset U\}$ is finite, where $T(x,m) = \{x\} \cup \{x_n : n > m\}$. Jiang [13] proved that a space is metrizable if and only if it has a *cs*-regular base. We sharpen his theorem by giving the following.

Theorem 29. A space X is metrizable if and only if X has a cs-regular \aleph_0 -weak base.

Proof. In [38, Theorem 2.2] P. Yan and S. Lin proved that a space X is metrizable if and only if X is a sequential space with a cs-regular cs^* -network. To complete the proof, we only need to show that X is \aleph_0 -weakly first-countable by Lemma 16.

Let $\mathcal{P} = \bigcup \{\mathcal{P}_x(n) : x \in X, n \in \mathbb{N}\}$ is a *cs*-regular \aleph_0 -weak base of X. For each $x \in X$, put $(\mathcal{P})_x = \{P \in \mathcal{P} : x \in P\}$. Suppose $(\mathcal{P})_x$ is uncountable for some $x \in X$. Since \mathcal{P} is *cs*-regular, it is easy to see the following:

(i) for each $y \neq x$, $\{P \in (\mathcal{P})_x : y \in P\}$ is finite.

(ii) for each infinite subfamily \mathcal{P}' of $(\mathcal{P})_x$, \mathcal{P}' forms a network at x, that is, $P \subset U$ for some $P \in \mathcal{P}'$ whenever $x \in U \in \tau$.

For each $P \in (\mathcal{P})_x$, pick $y(P) \in P - \{x\}$, then $(\mathcal{P})_x \cap (\mathcal{P})_{y(P)}$ is finite by (i). Since

$$(\mathcal{P})_x = \bigcup_{n \in \mathbb{N}} \{ P \in (\mathcal{P})_x : |(\mathcal{P})_x \cap (\mathcal{P})_{y(P)}| = n \}$$

is uncountable, there exists $k_0 \in \mathbb{N}$ such that

 $\mathcal{P}_0 = \{ P \in (\mathcal{P})_x : |(\mathcal{P})_x \cap (\mathcal{P})_{y(P)}| = k_0 \}$

is uncountable. By (i), $\{y(P) : P \in \mathcal{P}_0\}$ is uncountable. So we can choose $\{P_n : n \in \mathbb{N}\} \subset (\mathcal{P})_x$ and $\{x_n\}_{n \in \mathbb{N}}$ satisfying that $x_n \in P_n - \{x\}$ and $|(\mathcal{P})_x \cap (\mathcal{P})_{x_n}| = k_0$ for each $n \in \mathbb{N}$, where $P_n \neq P_{n'}$ and $x_n \neq x_{n'}$ for $n \neq n'$. Then $\{x_n\}_{n \in \mathbb{N}}$ converges to x by (ii). Since \mathcal{P} is a cs^* -network of X, there exist $\{Q_i : i \in \mathbb{N}\} \subset (\mathcal{P})_x$ and $\{n_i : i \in \mathbb{N}\} \subset \mathbb{N}$ such that

$$\{x_{n_j} : j \ge i\} \subset Q_i \subset X - \{x_{n_j} : j < i\}$$

for each $i \in \mathbb{N}$ by the induction. Pick $i_0 > k_0$, then $|(\mathcal{P})_x \cap (\mathcal{P})_{x_{n_{i_0}}}| \ge i_0 > k_0$, a contradiction. Therefore $(\mathcal{P})_x$ is countable. Thus X is \aleph_0 -weakly first-countable.

Note 30. Martin [26] proved the following result. A space X is metrizable if and only if there exists a sequence $\{\mathcal{G}_n\}_{n\in\mathbb{N}}$ of covers of X such that for each $x \in X$, $\{\operatorname{st}^2(x, \mathcal{G}_n) : n \in \mathbb{N}\}$ is a weak base at x. We can not replace "weak base" with " \aleph_0 -weak base" in the above result. For example, let $X = \{\infty\} \cup \{x_n(m) : m, n \in \mathbb{N}\}$ be a copy of S_{ω} , where the sequence $\{x_n(m)\}_{n\in\mathbb{N}}$ converges to ∞ for each $m \in \mathbb{N}$. For each $m, n \in \mathbb{N}$, let

$$L_{m,n} = \{\infty\} \cup \{x_i(m) : i \ge n\}, \text{and}$$
$$\mathcal{L}_{m,n} = \{\{x\} : x \in X \setminus \{\infty\}\} \cup \{L_{m,n}\}.$$

Define a sequence $\{\mathcal{G}_k\}_{k\in\mathbb{N}}$ as follows:

$$\mathcal{G}_1 = \mathcal{L}_{1,1}, \ \mathcal{G}_2 = \mathcal{L}_{1,2}, \ \mathcal{G}_3 = \mathcal{L}_{2,2}, \ \mathcal{G}_4 = \mathcal{L}_{1,3}, \ \mathcal{G}_5 = \mathcal{L}_{2,3}, \ \cdots \cdots$$

This is that $\mathcal{G}_k = \mathcal{L}_{m,n}$, where $k = m + \frac{n(n-1)}{2}$, $m \leq n$. For each $x \in X$, it is straightforward to prove that $\{\operatorname{st}^2(x, \mathcal{G}_k) : k \in \mathbb{N}\}$ is an \aleph_0 -weak base at x.

Let X be a regular space. X is called an M_1 -space if it has a σ -closurepreserving base, an M_2 -space if it has a σ -closure-preserving quasi-base, an M_3 -space if it has a σ -cushioned pair-base [5]. Obviously, M_1 -spaces $\Rightarrow M_2$ -spaces $\Rightarrow M_3$ -spaces [5]. H. J. K. Junnila, G. Gruenhage proved that every M_3 -space is M_2 , see [11]. It is still an open problem whether every M_3 -space is M_1 [5]. The proof of the following theorem is based on Foged's proof on \aleph -spaces [11].

Lemma 31. [29, Theorem 15] Let X be an M_3 -space with property (P):

Whenever U is open and $x \in \overline{U} \setminus U$, there exists a closure-preserving collection \mathcal{F} of closed subsets of X that is a network at x and $\overline{F \cap U} = F$ for each $F \in \mathcal{F}$.

Then X is an M_1 -space such that every closed subset has a closurepreserving open neighborhood base in X.

Theorem 32. Let X be strongly κ -Fréchet-Urysohn. Then X is an M_1 -space if and only if it is a regular space with a σ -closure-preserving \aleph_0 -weak base.

Proof. We only need to prove sufficiency. Let $\mathcal{B} = \bigcup_{n \in \mathbb{N}} \mathcal{B}_n$ be a σ -closurepreserving \aleph_0 -weak base for X, where \mathcal{B}_n is closure-preserving for each $n \in \mathbb{N}$. Since X is regular, we may assume that each element of \mathcal{B} is closed in X. Since every \aleph_0 -weak base is a network, X is a σ -space, therefore semi-stratifiable [11]. We first prove that strongly Fréchet-Urysohn spaces with a σ -closure-preserving \aleph_0 -weak base are monotonically normal.

Let H and K be disjoint closed subsets of X. For each $n \in \mathbb{N}$, let

$$U_n = \bigcup \{ F \in \mathcal{B}_i : i \le n, F \cap K = \emptyset \} \setminus \bigcup \{ F \in \mathcal{B}_i : i \le n, F \cap H = \emptyset \}$$

and let

$$D(H,K) = \operatorname{int}(\bigcup_{n \in \mathbb{N}} \overline{U_n}).$$

It is easy to see that D is "monotone" with respect to each pair (H, K) of disjoint closed subsets of X. We prove that $H \subset D(H, K)$ and $\overline{D(H, K)} \subset X \setminus K$.

If there exists $x \in H \setminus D(H, K)$, then $x \in \overline{X \setminus \bigcup_{n \in \mathbb{N}} \overline{U_n}}$. For each $n \in \mathbb{N}$, $x \in \overline{X \setminus \bigcup_{i \leq n} \overline{U_i}}$. Since X is strongly κ -Fréchet-Urysohn, there is $x_n \in X \setminus \bigcup_{i \leq n} \overline{U_i}$ with $x_n \to x$. Since \mathcal{B} is an \aleph_0 -weak base, some $F \in \mathcal{B}_m$ contains infinitely many $x'_n s$ and does not meet K by Lemma 16.

Since $x \in X \setminus \bigcup \{F \in \mathcal{B}_m : F \cap H = \emptyset\}$, we can pick j > m with $x_j \in U_m$. On the other hand, $x_j \in X \setminus \bigcup_{i \leq j} \overline{U_i}$, this is a contradiction. Hence $H \subset D(H, K)$.

We prove that $\overline{D(H,K)} \subset X \setminus K$. Suppose that $x \in K \cap \overline{D(H,K)}$, there is a sequence $\{x_n\}_{n \in \mathbb{N}} \subset D(H,K)$ with $x_n \to x$ since X is κ -Fréchet-Urysohn. Some $F \in \mathcal{B}_m$ contains a subsequence L of $\{x_n\}$ and $F \cap H = \emptyset$. By the construction of $U_n, U_i \cap F = \emptyset$ for $i \geq m$. Thus

$$L \subset \bigcup_{i < m} \overline{U_i} \subset \bigcup \{F \in \mathcal{B}_i : i \le m, F \cap K = \emptyset\}.$$

Then there exists i_0 such that

$$x \in \overline{U_{i_0}} \subset \overline{\cup \{F \in \mathcal{B}_i : i \leq i_0, F \cap K = \emptyset\}} = \cup \{F \in \mathcal{B}_i : i \leq i_0, F \cap K = \emptyset\},$$
hence $x \notin K$. This is a contradiction.

Therefore X is monotonically normal, thus M_3 [11]. Let U be an open subset of X, and let $x \in \overline{U} \setminus U$. Since X is κ -Fréchet-Urysohn, there is a sequence $\{x_n\}_{n \in \mathbb{N}} \subset U$ such that $x_n \to x$. Let $\mathcal{F} = \{L_i : i \in \mathbb{N}\}$, where each $L_i = \{x_n : n \geq i\} \cup \{x\}$. It is easy to check that \mathcal{F} is a closurepreserving family consisting of closed subsets of X and a network at x, also $\overline{L_i \cap U} = L_i$. By Lemma 31, X is an M_1 -space.

Question 33. Let X be a κ -Fréchet-Urysohn space. If X is a regular space with a σ -closure-preserving \aleph_0 -weak base, is X an M_1 -space?

Question 34. Is there a normal, \aleph_0 -weakly first-countable space which is not collectionwise Hausdorff in ZFC?

Acknowledgement

The authors would like to thank the referee for proposing some suggestions for corrections.

References

- A. Arhangel'skiĭ, Mappings and spaces, Russian Math. Surveys, 21 (1966), 115– 162.
- A. Arhangel'skii, The frequency spectrum of a topological space and the classification of spaces (in Russian), Dokl. Adak. Nauk. SSSR, 206 (2) (1972), 265– 268(=Soviet Math. Dokl., 13 (1972), 265–268).
- A. Arhangel'skiĭ, Topological invariants in algebraic environment, In: M. Husĕk and J. van Mill eds., Recent Progress in General Topology II, North-Holland, 2002, pp. 1–57.
- D. Burke, R. Engelking and D. Lutzer, *Hereditarily closure-preserving collections* and metrization, Proc. Amer. Math. Soc., 51 (1975), 483–488.
- J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105–125.
- G. Di Maio, L. D. R. Kočinac and E. Meccariello, Applications of k-covers, Acta Math. Sinica, English Ser., 22 (2006), 1151–1160.

- 7. R. Engelking, General Topology(revised and completed edition), Heldermann Verlag, Berlin, 1989.
- L. Foged, A characterization of closed images of metric spaces, Proc. Amer. Math. Soc., 95 (1985), 487–490.
- Z. Gao, ℵ-space is invariant under perfect mappings, Questions Answers in General Topology, 5 (1987), 271–279.
- 10. J. Gerlits, Some properties of C(X), II, Topology Appl., 15 (1983), 255–262.
- G. Gruenhage, *Generalized metric spaces*, In: K. Kunen and J. E. Vaughan eds., Handbook of Set-Theoretic Topology, Elsevier Science Publishers B. V., Amsterdam, 1984, pp. 423–501.
- G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math., 113 (2) (1984), 303–332.
- J. Jiang, Metrizability of topological space with a cs-regular base, Questions Answers in General Topology, 5 (1987), 243–248.
- H.J.K. Junnila and Ziqiu Yun, ℵ-spaces and spaces with a σ-hereditarily closurepreserving k-network, Topology Appl., 44 (1992), 209–215.
- Y. Kanatani, N. Sasaki and J. Nagata, New characterizations of some generalized metric spaces, Math. Japonica, 30 (1985), 805–820.
- S. Lin, A note on the Arens' space and sequential fan, Topology Appl., 81 (3) (1997), 185–196.
- 17. S. Lin, Generalized Metric Spaces and Mappings (in Chinese), Second Edition, Chinese Science Press, 2007.
- S. Lin, C. Liu and Mumin Dai, *Images on locally separable metric spaces*, Acta Math. Sinica, New Ser., 13 (1997), 1–8.
- C. Liu, On weakly bisequential spaces, Comment. Math. Univ. Carolinae, 41 (3) (2000), 611–617.
- 20. C. Liu, Notes on closed mappings, Houston J. Math., 33 (2007), 249-259.
- C. Liu and S. Lin, On countable-to-one maps, Topology Appl., 154 (2007), 449– 454.
- 22. C. Liu and L. Ludwig, $\kappa\text{-}Fr\acute{e}chet\text{-}Urysohn\ spaces,$ Houston J. Math., **31** (2) (2005), 391–401.
- C. Liu and Y. Tanaka, Spaces with a star-countable k-network, and related results, Topology Appl., 74 (1996), 25–38
- C. Liu and Y. Tanaka, Star-countable k-networks, compact-countable k-networks, and Related results, Houston J. Math., 24 (4) (1998), 655–670.
- C. Liu and Y. Tanaka, Spaces and mappings: special networks, In: E. Pearl ed., Open Problems in Topology II, Elsevier Science Publishers B. V., Amsterdam, 2007, pp. 23–34.
- W. Martin, Weak bases and metrization, Tran. Amer. Math. Soc., 222 (1976), 337–344.
- R. McCoy and I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics 1315, Springer-Verlag, 1988.
- E. A. Michael, A quintuple quotient quest, General Topology Appl., 2 (1972), 91–138.
- T. Mizokami and N. Shimane, On the M₃ versus M₁ problem, Topology Appl., 105 (2000), 1–13.
- 30. T. Nogura, D. Shakhmatov and Y. Tanaka, α_4 -property versus A-property in topological spaces and groups, Studia Scien. Math. Hungarica, **33** (1997), 351–362.
- M. Sakai, On spaces with a star-countable k-network, Houston J. Math., 23 (1997), 45–56.

- M. Sakai, A special subset of the real line and regularity of weak topologies, Topology Proc., 23 (1998), 281–287.
- M. Sakai, Function spaces with a countable cs*-network at a point, Topology Appl., 156 (2008), 117–123.
- 34. R. Shen, On \aleph_0 -weak bases, Houston J. Math., **35** (2009), 501–514.
- R. Sirois-Dumais, Quasi-and weakly quasi-first-countable spaces, Topology Appl., 11 (3)(1980), 223–230.
- 36. S. A. Svetlichny, Intersection of topologies and metrizability in topological groups, Vestnik Moskov Univ. Matematika, 44 (4) (1989), 79–81.
- Y. Tanaka, Point-countable covers and k-networks, Topology Proc., 12 (1987), 327–349.
- P. Yan and S. Lin, cs-regular networks and metrization theorems, Topology Proc., 30 (2006), 627–634.

Chuan Liu: Department of Mathematics, Ohio University-Zanesville, Ohio, OH $43701,\,\mathrm{USA}$

E-mail address: liuc1@ohio.edu

Shou Lin: Institute of Mathematics, Ningde Teachers' College, Fujian 352100, P. R. China

E-mail address: shoulin60@163.com

JINJIN LI: DEPARTMENT OF MATHEMATICS, ZHANGZHOU NORMAL UNIVERSITY, FUJIAN 363000, P. R. CHINA

E-mail address: jinjinli@fjzs.edu.cn