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Abstract. In this paper, the authors mainly discuss the images of spaces

with an uniform base at non-isolated points, and obtain the following main

results: (1) Perfect maps preserve spaces with an uniform base at non-

isolated points; (2) Open and closed maps preserve regular spaces with an

uniform base at non-isolated points; (3) Spaces with an uniform base at

non-isolated points don’t satisfy the decomposition theorem.

1. Introduction

Recently, spaces with an uniform base or spaces with a sharp base bring some
topologist attention and interesting results about certain bases are obtained [2, 3,
14]. In [9], the authors define the notion of uniform bases at non-isolated points
and obtain some related matters. For example, it is proved that a space X has an
uniform base at non-isolated points if and only if X is the open boundary-compact
image of a metric space. It is well known that the class of spaces under the open
and compact images of metric spaces are preserved by perfect maps or closed and
open maps(see [14]). Hence a question arises:“What kind of maps preserve spaces
with a uniform base at non-isolated points?” In this paper we shall consider the
invariance of spaces with an uniform base at non-isolated points under perfect
maps or closed and open maps.

By R,N, denote the set of all real numbers and positive integers, respectively.
For a topological space X, let τ(X) denote the topology for X, and let

I(X) = {x : x is an isolated point of X},
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Xd = X − I(X),

I(X) = {{x} : x ∈ I(X)},
I∆(X) = {({x}, {x}) : x ∈ I(X)}.

In this paper all spaces are Hausdorff, all maps are continuous and onto. Recall
some basic definitions.

Definition 1.1. Let P be a base of a space X. P is an uniform base [1] (resp.
uniform base at non-isolated points [9]) for X if for each (resp. non-isolated)
point x ∈ X and P ′ is a countably infinite subset of {P ∈ P : x ∈ P}, P ′ is a
neighborhood base at x in X.

In the definition, “at non-isolated points” means “at each non-isolated point
of X”.

Definition 1.2. [8] Let f : X → Y be a map.
(1) f is a boundary-compact map, if each ∂f−1(y) is compact in X;
(2) f is a compact map if each f−1(y) is compact in X;
(3) f is a perfect map if f is a closed and compact map.

Definition 1.3. Let X be a space and {Pn}n a sequence of collections of open
subsets of X.

(1) {Pn}n is called a quasi-development [4] for X if for every x ∈ U with U

open in X, there exists n ∈ N such that x ∈ st(x,Pn) ⊂ U .
(2) {Pn}n is called a development [13](resp. development at non-isolated

points[9]) for X if {st(x,Pn)}n is a neighborhood base at x in X for
each (resp. non-isolated) point x ∈ X.

(3) X is called quasi-developable (resp. developable, developable at non-
isolated points) if X has a quasi-development (resp. development, de-
velopment at non-isolated points).

Obviously, in the definition about developments at non-isolated points we can
assume that each Pn is a cover for X. Also, it is easy to see that a space which
is developable at non-isolated points is quasi-developable, but a space with a
development at non-isolated points may not have a development, see Example in
[9].

Definition 1.4. Let P be a family of subsets of a space X. P is called point-finite
at non-isolated points [9] if for each non-isolated point x ∈ X, x belongs to at
most finite elements of P. Let {Pn}n be a development (resp. a development at
non-isolated points) for X. {Pn}n is said to be a point-finite development (resp.
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a point-finite development at non-isolated points) for X if each Pn is point-finite
at each (resp. non-isolated) point of X.

Readers may refer to [8, 10] for unstated definitions and terminology.

2. Developments at non-isolated points

In this section some characterizations of spaces with a development at non-
isolated points are established.

Let X be a topological space. g : N × X → τ(X) is called a g-function, if
x ∈ g(n, x) and g(n+ 1, x) ⊂ g(n, x) for any x ∈ X and n ∈ N. For A ⊂ X, put

g(n,A) =
⋃
x∈A

g(n, x).

Theorem 2.1. Let X be a topological space. Then the following conditions are
equivalent:

(1) X has a development at non-isolated points;
(2) There exists a g-function for X such that, for every x ∈ Xd and sequences
{xn}n, {yn}n of X, if {x, xn} ⊂ g(n, yn) for every n ∈ N, then xn → x.

(3) X is a quasi-developable space, and Xd is a perfect subspace of X.

Proof. (1) ⇒ (2). Let {Un}n be a development at non-isolated points for X.
We can assume that I(X) ⊂ Un for every n ∈ N.

For every x ∈ X and n ∈ N, fix Un ∈ Un with x ∈ Un, where Un = {x} when
x ∈ I(X). Let g(n, x) =

⋂
i<n Ui. Then g : N×X → τ(X) is a g-function for X.

For every x ∈ Xd, if sequences {xn}n, {yn}n satisfy {x, xn} ⊂ g(n, yn) for every
n ∈ N, then xn → x because {Un}n is a development at non-isolated points.

(2) ⇒ (3). Let g be a g-function with (2). Put Un = {g(n, x) : x ∈ Xd} for
every n ∈ N. Then {Un}n ∪ {I(X)} is a quasi-development for X. Otherwise,
there exist x ∈ Xd and an open neighborhood U of x in X such that st(x,Un) 6⊂ U
for every n ∈ N. For every n ∈ N, choose xn ∈ st(x,Un) − U , then there exists
yn ∈ X such that {xn, x} ⊂ g(n, yn). Thus xn → x, a contradiction as X − U is
closed. Hence X has a quasi-development.

For any closed subset B of Xd, it is obvious that B ⊂
⋂
n∈N(g(n,B) ∩ Xd).

If a point x ∈
⋂
n∈N(g(n,B) ∩Xd) − B, then x ∈ g(n,B) ∩Xd for every n ∈ N.

There exists a sequence {yn}n in B such that {x, yn} ⊂ g(n, yn), so yn → x by
(2). Since Xd is closed in X, B is closed in X, then x ∈ B, a contradiction. Thus
B =

⋂
n∈N(g(n,B) ∩Xd), and Xd is a perfect subspace for X.

(3) ⇒ (1). Let {Un}n be a quasi-development for X, and Xd be a perfect
subspace of X. For any n ∈ N, there exists a sequence {Fn,j}j of closed subsets
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of Xd such that (∪Un) ∩Xd =
⋃
j∈N Fn,j . For each n, j ∈ N, put

Hn,j = Un ∪ {X − Fn,j}.

Then {Hn,j}n,j is a development at non-isolated points for X. Indeed, for any
x ∈ Xd and x ∈ U ∈ τ , since {Un}n is a quasi-development for X, there exists
n ∈ N such that x ∈ st(x,Un) ⊂ U . Hence there exists j ∈ N such that x ∈ Fn,j .
Thus x ∈ st(x,Hn,j) ⊂ U because x /∈ X − Fn,j . �

Let P be a pair-family of subsets of X. For any P ∈ P, we denote P = (P ′, P ′′).
For any R ⊂ P, denote

R′ = {P ′ : P ∈ R},

R′′ = {P ′′ : P ∈ R},

st(x,R) = ∪{P ′′ : P ∈ R, x ∈ P ′}, x ∈ X,

st(A,R) = ∪{P ′′ : P ∈ R, A ∩ P ′ 6= ∅}, A ⊂ X.
For each i ≤ n and Ri ⊂ P, denote

R1 ∧R2 · · · ∧ Rn = {(
⋂
i≤n

P ′i ,
⋂
i≤n

P ′′i ) : Pi ∈ Ri, i ≤ n}.

Definition 2.2. [5] Let X be a topological space and P a pair-family for X. P
is called a pair-network if P satisfies the following conditions:

(i) P ′ ⊂ P ′′ for any (P ′, P ′′) ∈ P;
(ii) For any x ∈ U ∈ τ(X), there exists (P ′, P ′′) ∈ P such that x ∈ P ′ ⊂ P ′′ ⊂

U .

Theorem 2.3. Let X be a space. Then the following conditions are equivalent:

(1) X is a developable space at non-isolated points;
(2) There exists a pair-network

⋃
n∈N Pn for X satisfying the following con-

ditions:
(i) For every n ∈ N, P ′n|Xd is a closed and locally finite family in Xd,
and P ′′n is open in X;
(ii) For every compact subset K and K ⊂ U ∈ τ(X), there exists m ∈ N
such that K ⊂ st(K,Pm) ⊂ U .

(3) There exists a pair-network
⋃
n∈N Pn for X satisfying the following con-

ditions:
(i) For every n ∈ N, P ′n|Xd is a closed and locally finite family in Xd;
(ii) For every x ∈ U ∈ τ(X), there exists m ∈ N such that x ∈
st◦(x,Pm) ⊂ U .
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Proof. We only need to prove that (3)⇒ (1)⇒ (2).
(3)⇒ (1). Let X had a pair-network

⋃
n∈NRn with (3). Then

⋃
n∈N R

′
n|Xd is

a closed and σ-locally finite network in Xd, Xd is a perfect subspace of X.
For any n, k ∈ N, let
φn,k = {F ⊂ R′n|Xd : |F| = k};
U(F) = (∪{R′′ : R ∈ Rn, R′ ∩Xd ∈ F})◦ − ∪(R′n|Xd −F), where F ∈ φn,k;
Un,k = {U(F) : F ∈ φn,k}.

We should prove that {Un,k}n,k ∪ {I(X)} is a quasi-development for X. For any
x ∈ Xd and x ∈ U ∈ τ(X), there exists m ∈ N such that x ∈ st◦(x,Rm) ⊂ U .
Let

F = {R′ ∩Xd : R ∈ Rm, x ∈ R′}, |F| = k.

It is easy to see F ∈ φm,k. Hence x ∈ U(F) ⊂ st◦(x,Rm) ⊂ U . If G ∈ φm,k−{F},
then x ∈ ∪(R′m|Xd −G). Thus x /∈ U(G). So x ∈ U(F) = st(x,Um,k) ⊂ U . Hence
{Un,k}n,k ∪ {I(X)} is a quasi-development for X.

In a word, X has a development at non-isolated points by Theorem 2.1.
(1)⇒ (2). Let {Un}n be a development at non-isolated points for X. We can

also assume that {Un}n satisfies the following conditions (a)-(c) for every n ∈ N:
(a) Un+1 refines Un;
(b) I(X) ⊂ Un;
(c) U1 ∩Xd 6= U2 ∩Xd for any distinct U1, U2 ∈ Un − I(X).

Put Un − I(X) = {Uα : α ∈ Λn}. Since Xd is a developable subspace of X, it
is a subparacompact subspace, then there exists a collection Fn =

⋃
k∈N Fn,k of

subsets of Xd such that each Fn,k = {Fk,α : α ∈ Λn} is closed and discrete in Xd

and Fk,α ⊂ Uα ∩Xd for every k ∈ N, α ∈ Λ. Let

Pn,k = {(Fk,α, Uα) : α ∈ Λn} ∪ I∆(X).

Then
⋃
n,k∈N Pn,k is a pair-network for X. Let

H(k1, k2, · · · , kn) =
∧
i≤n

Pi,ki
, ki ∈ N, i ≤ k.

Then H(k1, k2, · · · , kn) satisfies the condition (i) in (2). Suppose that K ⊂ U

with K compact and U open in X. If x ∈ K ∩Xd, there exists a sequence {ki}i
in N such that x ∈ ∪Fi,ki for any i ∈ N. For every n ∈ N, put

An = ∪{H ′ : H ∈ H(k1, k2, · · · , kn), H ′ ∩K 6= ∅, H ′′ 6⊂ U}.

Since Xd is closed in X, {An}n is a decreasing sequence of closed subsets of X.
Then there exists m ∈ N such that Am = ∅. Otherwise, there exist a non-isolated
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point y ∈ K ∩ (
⋂
n∈N An) and j ∈ N such that st(y,Uj) ⊂ U . Thus

st(y,H(k1, k2, · · · , kj)) ⊂ st(y,Uj) ⊂ U.

This is a contradiction with the definition of Aj . Hence Am = ∅ for some m ∈ N,
and

x ∈ st(K,H(k1, k2, · · · , km)) ⊂ U.

By the compactness of K, ∪{H(k1, · · · , kn) : n, ki ∈ N, i ≤ n} satisfies the condi-
tion (ii) of (2). �

Corollary 2.4. X is a developable space at non-isolated points if and only if X
has a pair-network P =

⋃
n∈N Pn satisfying the following conditions:

(i) For any n ∈ N, I∆(X) ⊂ Pn, and P ′ ⊂ Xd for any P ∈ Pn − I∆(X);
(ii) For every n ∈ N, P ′n|Xd is a closed and hereditarily closure-preserving

family in Xd;
(iii) There exists m ∈ N such that x ∈ st◦(x,Pm) ⊂ U for any x ∈ U ∈ τ(X).

Proof. Necessity. It is easy to see by the proof of (1)⇒ (2) in Theorem 2.3.
Sufficiency. Let P =

⋃
n∈N Pn be a pair-network for X satisfying the condition

(i)-(iii). For any n ∈ N, put

Dn = {x ∈ X : |(P ′n)x| ≥ ℵ0},

Rn = {(P ′ −Dn, P
′′) : P ∈ Pn − I∆(X)}

∪{({x}, st(x,Pn)) : x ∈ Dn} ∪ I∆(X).

Then
⋃
n∈NRn is a pair-network for X. We shall show that

⋃
n∈NRn satisfies

the condition (3) in Theorem 2.3. Since X is a first-countable space by (iii), it is
easy to see that R′n|Xd is a closed and locally finite family in Xd by [10, Lemma
3.2.16]. Suppose x ∈ U ∈ τ(X). If x ∈ I(X)∪ (

⋃
n∈N Dn), it is obvious that there

exists m ∈ N such that x ∈ st◦(x,Rm) ⊂ U . If x ∈ X− (I(X)∪ (
⋃
n∈N Dn)), then

x ∈ st(x,Rn) = st(x,Pn). Thus X is a developable space at non-isolated points
by Theorem 2.3. �

Example 2.5. Let X = N ∪ {p}, here p ∈ βN − N, endowed with the subspace
topology of Stone-Čech compactification βN. Then Xd = {p} is a metrizable
subspace ofX. SinceX is not first-countable, thenX does not have a development
at non-isolated points.
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3. The images of spaces with an uniform base at non-isolated points

In this section invariant properties of spaces with a development at non-isolated
points and spaces with an uniform base at non-isolated points are discussed under
perfect maps or closed and open maps.

A space X is called metacompact if every open cover of X has a point-finite
open refinement.

Lemma 3.1. For a space X, Xd is a metacompact subspace of X if and only if
every open cover of X has an open refinement which is point-finite at non-isolated
points.

Proof. Sufficiency is obvious. We only prove the necessity.
Necessity. Let Xd be a metacompact subspace of X. For every open cover U

for X, it is easy to see that U|Xd is an open cover for subspace Xd. Since Xd is
a metacompact subspace, there exists an open and point-finite refinement V(in
Xd) for U|Xd . For every V ∈ V, there exist U ∈ U and W (V ) ∈ τ(X) such that
V = W (V ) ∩Xd and W (V ) ⊂ U . Put

W = {W (V ) : V ∈ V}.

Then W is an open refinement for U and also point-finite at non-isolated points.
�

Lemma 3.2. Let X be a topological space. Then the following conditions are
equivalent:

(1) X is an open boundary-compact image of a metric space;
(2) X has an uniform base at non-isolated points;
(3) X has a point-finite development at non-isolated points;
(4) X has a development at non-isolated points, and Xd is a metacompact

subspace of X.

Proof. (1) ⇔ (2) ⇔ (3) was proved in [9]. We only need to prove (1) ⇒ (4) ⇒
(3).

(1)⇒ (4). Let f : M → X be an open boundary-compact mapping, where M
is a metric space. Let U be an open cover for X. Then f−1(U) is an open cover
for M . Since M is paracompact, there exists a locally finite open refinement V
of f−1(U). It is easy to see that f(V) is point-finite at non-isolated points, and
refines U . Hence Xd is metacompact by Lemma 3.1.

(4) ⇒ (3). Let {Un}n be a development at non-isolated points of X. For
every n ∈ N, since Xd is metacompact, Un has an open refinement Vn which is
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point-finite at non-isolated points. Hence {Vn}n is a point-finite development at
non-isolated points. �

Let
⋃
n∈N Pn be a pair-network for a space X. We say that

⋃
n∈N Pn satisfies

(?) if it has the (i) of Corollary 2.4. That is, let (?) be the condition:
(?) For any n ∈ N, I∆(X) ⊂ Pn and P ′ ⊂ Xd for any P ∈ Pn − I∆(X).

Theorem 3.3. Spaces with a development at non-isolated points are preserved
by perfect maps.

Proof. Let f : X → Y be a perfect map, where X is developable at non-
isolated points. Let

⋃
n∈N Pn be a pair-network which satisfies the condition (2)

in Theorem 2.3 for X. It is easy to see that we can suppose that
⋃
n∈N Pn satisfies

the condition (?) by the proof of (1)⇒ (2) in Theorem 2.3.
For any n ∈ N, put

Bn = {(f(P ′), f(P ′′)) : P ∈ Pn};

Rn = {(f(P ′) ∩ Y d, f(P ′′)) : P ∈ Pn − I∆(X)} ∪ I∆(Y ).

Since f is closed, Y d ⊂ f(Xd). It is easy to check that
⋃
n∈NRn is a pair-network

for Y . Next, we shall show that it satisfies the condition (3) of Theorem 2.3 for
Y .

(i) It is well-known that a locally finite family is preserved by a perfect map.
Since f |Xd : Xd → f(Xd) is a perfect map and P ′n|Xd is closed and locally finite
in Xd, {f(P ′ ∩Xd) : P ∈ Pn} is closed and locally finite in f(Xd), then

{f(P ′ ∩Xd) ∩ Y d : P ∈ Pn − I∆(X)} = R′n|Y d

is closed and locally finite in Y d by the condition (?).
(ii) Let y ∈ U ∈ τ(Y ). We can suppose that y ∈ Y d. Since f−1(y) is compact

for X, there exists m ∈ N such that

f−1(y) ⊂ st(f−1(y),Pm) ⊂ f−1(U).

Since f is closed and st(f−1(y),Pm) is open in X, then

y ∈ st◦(y,Bm) ⊂ st(y,Bm) ⊂ U.

If y ∈ f(P ′) ∩ Y d with P ∈ I∆(X), f(P ′′) = {y} ⊂ st(y,Rm). Thus st(y,Bm) =
st(y,Rm), hence y ∈ st◦(y,Rm) ⊂ U . �

Corollary 3.4. Spaces with an uniform base at non-isolated points are preserved
by perfect maps.
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Proof. Since metacompactness is preserved by closed maps, it is easy to see by
Lemma 3.2 and Theorem 3.3. �

Let Ξ be a topological property. Ξ is said to satisfy the decomposition theorem
if, for any space X with the property Ξ and any closed map f : X → Y , there
exists a σ-closed discrete subset Z ⊂ Y such that f−1(y) is compact in X for any
y ∈ Y − Z.

In [6, Theorem 1.1], J. Chaber proved that each regular σ-space satisfies the
decomposition theorem.

Theorem 3.5. Let f : X → Y be a closed map, where X is a regular space
having a development at non-isolated points. If Y is a first-countable space, then
Y is developable at non-isolated points.

Proof. Since subspace Xd is a Moore space, there exists a subspace Z =⋃
n∈N Zn ⊂ Y d such that, for any y ∈ Y d − Z, f−1(y) ∩Xd is a compact subset

of Xd by [6, Theorem 1.1], where each Zn is closed and discrete in Y d. Hence
f−1(y) ∩ Xd is a compact subset of X for any y ∈ Y d − Z. For any y ∈ Z, let
{U(y, n) : n ∈ N} be a neighborhood base of y in Y . Let

⋃
n∈N Pn be a pair-

network for X satisfying the condition (2) of Theorem 2.3, and the condition (?)
by the proof of (1)⇒ (2) in Theorem 2.3.

For any n, j ∈ N, let

Wn = {(f(P ′), f(P ′′)) : P ∈ Pn},

Rn = {(f(P ′) ∩ Y d, f(P ′′)) : P ∈ Pn − I∆(X)} ∪ I∆(Y ),

Hn,j = {({y}, U(y, j)) : y ∈ Zn} ∪ I∆(Y ).

Then
(
⋃
n∈N
Rn) ∪ (

⋃
n,j∈N

Hn,j) ∪ I∆(Y )

is a pair-network for Y and satisfies the conditions (i) and (ii) of Corollary 2.4
because a hereditarily closure-preserving family is preserved by a closed map. We
only need to prove that it also satisfies (iii) in Corollary 2.4. For any y ∈ U ∈ τ(Y ),
we discuss the following three cases respectively.

(a) If y ∈ Z, then there exist n ∈ N and j ∈ N such that y ∈ Zn and
U(y, j) ⊂ U . Hence y ∈ st◦(y,Hn,j) ⊂ U(y, j) ⊂ U .

(b) If y ∈ Y d − Z, then f−1(y) ∩Xd is a compact subset for X. There exists
m ∈ N such that

f−1(y) ∩Xd ⊂ st(f−1(y) ∩Xd,Pm) ⊂ f−1(U),
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then
f−1(y) ⊂ st(f−1(y),Pm)

= st(f−1(y) ∩Xd,Pm) ∪ st(f−1(y) ∩ I(X),Pm) ⊂ f−1(U),

thus y ∈ st◦(y,Wm) ⊂ U . Since st(y,Rm) = st(y,Wm), y ∈ st◦(y,Rm) ⊂ U .
(c) If y ∈ I(Y ), then y ∈ st(y, I∆(Y )) = {y} ⊂ U .
Hence Y is a developable space at non-isolated points by Corollary 2.4. �

Corollary 3.6. Regular spaces with an uniform base at non-isolated points are
preserved by open and closed maps.

Proof. Let f : X → Y be an open and closed map, where X is a regular space
having an uniform base at non-isolated points. Since f is open and closed, Y
is regular and first-countable space, thus Y has an uniform base at non-isolated
points by Theorem 3.5. �

A collection C of subsets of an infinite set D is said to be almost disjoint if
A ∩ B is finite whenever A 6= B ∈ C. Let A be an almost disjoint collection
of countably infinite subsets of D and maximal with respect to the properties.
Isbell-Mrówka space ψ(D) is the set A ∪ D endowed with a topology as follows
[12]: The points of D are isolated. Basic neighborhoods of a point A ∈ A are the
sets of the form {A} ∪ (A− F ) where F is a finite subset of D.

Example 3.7. There exists a closed map f : X → Y , where X is a regular space
with an uniform base at non-isolated points and Y is a first-countable space.
However, f is not a boundary-compact map.

Proof. Let A be an almost disjoint collection of countably infinite subsets of N
and maximal with respect to the properties. Let ψ(N) = A ∪ N be the Isbell-
Mrówka space. Then ψ(N) is a regular space with an uniform base at non-isolated
points.

Define f : ψ(N) → ψ(N)/A by a quotient map, then f is a closed map and
the quotient space ψ(N)/A is a first-countable space. Since ∂f−1({A}) = A is
discrete in ψ(N), f is not boundary-compact. �

Since a regular space with an uniform base is a σ-space, regular spaces with
an uniform base satisfy the decomposition theorem. But regular spaces with an
uniform base at non-isolated points don’t satisfy the decomposition theorem.

Example 3.8. There are a regular space X with an uniform base at non-isolated
points and a closed map f : X → Y such that f does not satisfy the decomposition
theorem.
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Let Y be the Isbell-Mrówka space ψ(D), where D is an uncountable set. Let
S1 = {0} ∪ {1/n : n ∈ N} be the subspace of the real line R. Put

X = Y × S1 − (D × {0}),

endowed with the subspace topology of product topology. Then X is a regular
space. Let f : X → Y be the projective map. Then f is a closed map.

Let ψ(D) = A∪D, where A = {Aα}α∈Λ and each Aα = {x(α, n) : n ∈ N} ⊂ D.
Put

Vn(α) = {x(α,m) : m ≥ n} ∪ {Aα},
Un(0) = {0} ∪ {1/m : m ≥ n},
B = {{(x, y)} : (x, y) ∈ D × (S1 − {0})}

∪{Vn(α)×Un(0) : n ∈ N, α ∈ Λ}∪{Vm(α)×{1/n} : m,n ∈ N}.
It is easy to see that B is an uniform base at non-isolated points for X. However,
f−1(y) = {y} × (S1 − {0}) is not compact in X for any y ∈ D. Since any closed
(in Y ) subset contained in D is finite, D is not a σ-discrete subspace for Y . Thus
f : X → Y does not satisfy the decomposition theorem.

The authors would like to thank the referee for his/her valuable suggestions.
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