THE CLOSED MAPPINGS ON k-SEMISTRATIFIABLE SPACES

SHOU LIN, ZHANGYONG CAI, AND CHUAN LIU

ABSTRACT. Let $f: X \to Y$ be a closed mapping, where X is a k-semistratifiable k-space. If Y contains no closed copy of $S_{\omega_1}(\text{resp. } S_{\omega})$, then $\partial f^{-1}(y)$ is Lindelöf(resp. compact) for each $y \in Y$. This improves some results about closed mappings on generalized metric spaces obtained by Liu [10], Tanaka [13, 14, 15], Tanaka and Liu [16], and Yun [19]. At last, two mapping theorems on $k\beta^+$ -spaces are established.

1. INTRODUCTION

The following Hanai-Morita-Stone Theorem(see [3]) is well known. Let $f : X \to Y$ be a closed mapping, where X is a metric space. Then $\partial f^{-1}(y)$ is compact for each $y \in Y$ if and only if Y is a metric space.

Y. Tanaka [13, 14, 15] proved the following theorem.

Theorem 1.1. Let $f: X \to Y$ be a closed mapping, where X is a normal, k-and \aleph -space. Then $\partial f^{-1}(y)$ is Lindelöf(resp. compact) for each $y \in Y$ if and only if Y contains no closed copy of S_{ω_1} (resp. S_{ω}).

And the following question was posed by Y. Tanaka and Chuan Liu [16].

Question 1.2. Let $f : X \to Y$ be a closed map. Under what conditions on X or Y, does $\partial f^{-1}(y)$ have some nice properties for each $y \in Y$?

Interestingly, Liu [10] and Yun [19] have obtained a more precise result recently.

Theorem 1.3. Let $f: X \to Y$ be a closed mapping, where X is a k-and- \aleph -space. Then $\partial f^{-1}(y)$ is Lindelöf(resp. compact) for each $y \in Y$ if and only if Y contains no closed copy of $S_{\omega_1}(\text{resp. } S_{\omega})$.

²⁰⁰⁰ Mathematics Subject Classification. 54C10, 54D20, 54D55, 54E18, 54E20.

Key words and phrases. k-semistratifiable spaces, k-spaces, closed mappings, Lindelöf spaces.

The first author(corresponding author) is supported by the NNSF of China(No. 10571151).

¹³⁹

Definition 1.4. [11] A space X is said to be k-semistratifiable if for each open subset U of X there is a sequence $\{F(n,U)\}_{n\in\mathbb{N}}$ of closed subsets of X such that

- (1) $U = \bigcup_{n \in \mathbb{N}} F(n, U);$
- (2) If $V \subset U$, then $F(n, V) \subset F(n, U)$;
- (3) If a compact subset $K \subset U$, then $K \subset F(m, U)$ for some $m \in \mathbb{N}$.

Each \aleph -space is a k-semistratifiable space [11]. In the paper, we point out that the sufficiency still holds if X in Theorem 1.3 is weakened to be a k-semistratifiable k-space(see Theorem 2.5), and it is not true if X is a Moore space(see Remark 2.6) or an \aleph -space(see Remark 2.7).

On the other hand, k-semistratifiable spaces are preserved by closed mapping [5]. Each k-semistratifiable space is a $k\beta$ -space, and each $k\beta$ -space is preserved by compact-covering and closed mappings [17], here a continuous mapping $f : X \to Y$ is called a compact-covering mapping [3] if K is compact in Y, then f(L) = K for some compact subset L in X. The following question is still open [17, Question 3.5].

Question 1.5. Is each $k\beta$ -space preserved by closed mappings?

In this paper $k\beta^+$ -spaces are introduced and discussed, and it is proved that $k\beta^+$ -spaces are preserved by closed mappings(see Theorem 3.3).

All spaces are assumed to be Hausdorff, and mappings are continuous and surjective.

2. Main Results

Let X be a space and $P \subset X$. P is said to be a sequential neighborhood of $x \in P$ in X if each sequence converging to x is eventually in P. P is a sequentially open subset of X if P is a sequential neighborhood of x in X for each $x \in P$. P is a sequentially closed subset of X if $X \setminus P$ is sequentially open. X is said to be a sequential space [3] if each sequentially open subset is open in X.

Lemma 2.1. [8] Let X be a k-semistratifiable space. Then for each subset W of X there is a sequence $\{H(n, W)\}_{n \in \mathbb{N}}$ of closed subsets of X such that

- (1) $H(n,W) \subset H(n+1,W) \subset W;$
- (2) If $V \subset W$, then $H(n, V) \subset H(n, W)$;
- (3) If W is a sequential neighborhood of x, then every sequence converging to x is eventually in H(m, W) for some $m \in \mathbb{N}$;
- (4) If $\{G_{\alpha} : \alpha \in \Lambda\}$ is a disjoint family of subsets of X and $n \in \mathbb{N}$, then $\{H(n, G_{\alpha}) : \alpha \in \Lambda\}$ is a discrete family in X.

A subset D of a space X is said to be relatively discrete in X if D is a discrete subspace of X, i.e., for each $x \in D$, there is an open neighborhood U_x of x such that $U_x \cap (D \setminus \{x\}) = \emptyset$.

Lemma 2.2. Let X be a k-semistratifiable space. If $D = \{x_{\alpha} : \alpha \in \Lambda\}$ is a relatively discrete subset of X, there is a disjoint family $\{U_{\alpha} : \alpha \in \Lambda\}$ such that

- (1) U_{α} is a sequential neighborhood of x_{α} in X for each $\alpha \in \Lambda$;
- (2) $\{y_{\alpha} : \alpha \in \Lambda'\} \cup \overline{D} \text{ is sequentially closed in } X \text{ for each } \Lambda' \subset \Lambda \text{ and } y_{\alpha} \in U_{\alpha}.$

PROOF. Suppose that $H(\cdot, \cdot)$ is a function, which satisfies Lemma 2.1. For $\alpha \in \Lambda$, let

- (1) $L_{\alpha} = \overline{\{x_{\beta} : \alpha \neq \beta \in \Lambda\}};$
- (2) $G_{\alpha} = \bigcup_{n \in \mathbb{N}} (H(n, X \setminus L_{\alpha}) \setminus H(n, X \setminus \{x_{\alpha}\}));$ and
- (3) $U_{\alpha} = \bigcup_{n \in \mathbb{N}} (H(n, G_{\alpha}) \setminus H(n, X \setminus \{x_{\alpha}\})).$

Then U_{α} is a sequential neighborhood of x_{α} in X. In fact, suppose a sequence $S \to x_{\alpha}$. Since $x_{\alpha} \notin L_{\alpha}$, by Lemma 2.1(3), S is eventually in some $H(m, X \setminus L_{\alpha})$. Thus S is eventually in $H(m, X \setminus L_{\alpha}) \setminus H(m, X \setminus \{x_{\alpha}\}) \subset G_{\alpha}$. Hence S is eventually in some $H(k, G_{\alpha}) \setminus H(k, X \setminus \{x_{\alpha}\}) \subset U_{\alpha}$.

It is easy to check that $\{G_{\alpha} : \alpha \in \Lambda\}$ is disjoint and $U_{\alpha} \subset G_{\alpha}$. Then $\{U_{\alpha} : \alpha \in \Lambda\}$ is disjoint. If there is $\Lambda' \subset \Lambda$ such that $\{y_{\alpha} : \alpha \in \Lambda'\} \cup \overline{D}$ is not sequentially closed in X with some $y_{\alpha} \in U_{\alpha}$ for each $\alpha \in \Lambda'$, then there is a non-trivial sequence L in $\{y_{\alpha} : \alpha \in \Lambda'\} \setminus \overline{D}$ such that L converges to some point $x \notin \overline{D}$. We can assume that there is an $m \in \mathbb{N}$ such that $L \subset H(m, X \setminus \overline{D})$, hence $L \subset H(n, X \setminus \{x_{\alpha}\})$ for each $\alpha \in \Lambda$, $n \ge m$. Thus $L \subset \bigcup_{\alpha \in \Lambda, n < m} H(n, G_{\alpha})$, so there are an infinite subset $L' \subset L$ and n < m such that $L' \subset \bigcup_{\alpha \in \Lambda} H(n, G_{\alpha})$. By Lemma 2.1(4), L' is discrete in X, a contradiction.

Lemma 2.3. Each k-semistratifiable space has a σ -discrete network.

PROOF. Let (X, τ) be a k-semistratifiable space. There is a function $g : \mathbb{N} \times X \to \tau$ such that [4, Theorem 5]

(1) $x \in g(n+1, x) \subset g(n, x)$ for each $n \in \mathbb{N}, x \in X$;

(2) If $x_n \in g(n, y_n)$ for each $n \in \mathbb{N}$ and $x_n \to p$ in X, then $y_n \to p$ in X.

Thus if $p \in g(n, y_n)$ and $y_n \in g(n, x_n)$ for each $n \in \mathbb{N}$, then $x_n \to p$. By the similar proof in [6, Theorem 4.11(v) \Rightarrow (i)], X has a σ -discrete network.

A space X is said to be a k-space [3] if whenever $K \cap A$ is closed in K for each compact subset K of X, then A is closed in X. Each sequential space is a k-space, and each k-space which each point is a G_{δ} -set is a sequential space [9]. **Lemma 2.4.** [8] Each k-semistratifiable k-space is a hereditarily meta-Lindelöf space.

k-semistratifiable spaces are preserved by closed mappings [5]. The following is a closed mapping theorem on k-semistratifiable spaces about Question 1.2 and Theorem 1.3.

Theorem 2.5. Let $f : X \to Y$ be a closed mapping, where X is a k-semistratifiable k-space. Then $\partial f^{-1}(y)$ is Lindelöf(resp. compact) for each $y \in Y$ if Y contains no closed copy of $S_{\omega_1}(\text{resp. } S_{\omega})$.

PROOF. For each $y \in Y$, put

 $A = \{x \in \partial f^{-1}(y) : \text{there is a sequence in } X \setminus f^{-1}(y) \text{ converging to } x\}.$

Claim 1: $\overline{A} = \partial f^{-1}(y)$.

If not, let $B = f^{-1}(y) \setminus \overline{A}$, and $C = \partial f^{-1}(y) \setminus \overline{A}$. Then $\emptyset \neq C \subset B$ and B is a sequentially open set of X. In fact, let S be a sequence in X, which converges to a point $x \in B$. If $x \in \operatorname{int}(f^{-1}(y))$, then S is eventually in B. If $x \in C$, then $\overline{A} \cup (X \setminus f^{-1}(y))$ contains no subsequence of S, and so S is eventually in B. And because X is a k-space and each point of X is a G_{δ} -set, X is a sequential space. Thus B is open in X. Therefore $B \subset \operatorname{int}(f^{-1}(y))$, and $C = C \cap \operatorname{int}(f^{-1}(y)) = \emptyset$, a contradiction.

(1) Suppose Y contains no closed copy of S_{ω_1} . Then we have the following Claim 2.

Claim 2: A is an \aleph_1 -compact subset of X.

If A is not \aleph_1 -compact, then X has an uncountable relatively discrete subset $D = \{x_\alpha : \alpha < \omega_1\}$, which is closed discrete in A. Thus $D = \overline{D} \cap A$, and there is a disjoint family $\{U_\alpha : \alpha < \omega_1\}$, which satisfies Lemma 2.2. For each $\alpha < \omega_1$ and $y_\alpha \in U_\alpha \setminus f^{-1}(y)$, by Lemma 2.2, $\{y_\alpha : \alpha < \omega_1\}$ is closed discrete in X. In fact, if $\{y_\alpha : \alpha < \omega_1\}$ contains a sequence converging to a point $x \in \overline{D}$, then $x \in D$. Thus there is $\beta < \omega_1$ such that $x = x_\beta \in U_\beta$. Hence there exist infinitely many y_α 's with $y_\alpha \in U_\beta$, a contradiction. Now, it is not difficult to see that for each $\alpha < \omega_1$, there is a sequence L_α in $X \setminus f^{-1}(y)$ such that $L_\alpha \to x_\alpha$, and $\{y\} \cup (\cup\{f(L_\alpha) : \alpha < \omega_1\})$ is a closed copy of S_{ω_1} . This is a contradiction. Hence Claim 2 holds.

A has a σ -discrete network by Lemma 2.3. Thus A has a countable network by Claim 2, so A is separable. Then $\overline{A} = \partial f^{-1}(y)$ is separable by Claim 1. Since a separable meta-Lindelöf space is Lindelöf, $\partial f^{-1}(y)$ is a Lindelöf space by Lemma 2.4.

(2) Suppose Y contains no closed copy of S_{ω} . By the proof analogous to (1), A is countably compact. Each countably compact k-semistratifiable space is compact by Lemma 2.3, and so $\partial f^{-1}(y) = \overline{A} = A$ is compact.

This completes the proof of Theorem 2.5.

Remark 2.6. There exists a closed mapping $f : X \to Y$, where X is a Moore space(hence, a k-and σ -space), Y contains no closed copy of S_{ω} , but f is not peripherally Lindelöf.

Let X be the Isbell-Mrówka space $\psi(\mathbb{N})$ (see [2, Example 4.4]), and Y be the convergent sequence $\mathbb{S}_1 = \{0\} \cup \{1/n : n \in \mathbb{N}\}$ with the usual topology. Then X is a Moore space, and Y contains no closed copy of S_{ω} . Define a mapping $f : \psi(\mathbb{N}) \to \mathbb{S}_1$ by $f(\psi(\mathbb{N}) \setminus \mathbb{N}) = \{0\}$ and f(n) = 1/n for each $n \in \mathbb{N}$. Thus f is a closed mapping, and $\partial f^{-1}(0) = \psi(\mathbb{N}) \setminus \mathbb{N}$ is not Lindelöf.

The following Remark indicates that k-ness of X in Theorem 2.5 is essential. A space X is said to be an \aleph -space if it is a regular space with a σ -locally finite k-network [6].

Remark 2.7. There exists a closed mapping $f : X \to Y$, where X is an \aleph -space(hence, a k-semistratifiable space), Y contains no closed copy of S_{ω} , but f is not peripherally Lindelöf.

Let $S_2 = \{0\} \cup (\bigcup_{i \in \mathbb{N}} X_i)$, where $X_i = \{1/i\} \cup \{1/i + 1/j^2 : j \ge i\}$. The S_2 be endowed the Arens topology [3, Example 1.6.19]. For each $\alpha < \omega_1$, put $X_\alpha = S_2 \setminus \{1/n : n \in \mathbb{N}\}$. Then X_α is a paracompact \aleph -space. Let $X = \bigoplus_{\alpha < \omega_1} X_\alpha$, and A be the set of all accumulation points in X. Then A is closed in X. Put Y = X/A, and let $f : X \to Y$ be a natural quotient mapping. Then f is a closed mapping, and so f is a compact-covering mapping. Since each compact subset of X is finite, each compact subset of Y is finite. Thus Y contains no closed copy of S_ω . But $\partial f^{-1}([A]) = A$ is not Lindelöf.

3. Related Results

In this section, we discuss closed mapping theorems on $k\beta^+$ -spaces about Question 1.5.

Definition 3.1. Let (X, τ) be a space, and $g : \mathbb{N} \times X \to \tau$ a function satisfied $x \in g(n+1, x) \subset g(n, x)$ for each $n \in \mathbb{N}, x \in X$. Consider the following conditions on g.

(1) If K is compact in X and $K \cap g(n, y_n) \neq \emptyset$ for each $n \in \mathbb{N}$, then $\{y_n\}$ has a cluster point in X.

- (2) If $x_n \in g(n, y_n)$ for each $n \in \mathbb{N}$ and $\{x_n\}$ has a cluster point, then $\{y_n\}$ has a cluster point in X;
- (3) If $x_n \in g(n, y_n)$ for each $n \in \mathbb{N}$ and each subsequence of $\{x_n\}$ has a cluster point, then $\{y_n\}$ has a cluster point in X;

X is called a $k\beta$ -space [17] if there is a function g satisfying the condition (1). X is called a *wcc*-space [18] if there is a function g satisfying the condition (2). X is called a $k\beta^+$ -space if there is a function g satisfying the condition (3).

Obviously, wcc-spaces $\Rightarrow k\beta^+$ -spaces $\Rightarrow k\beta$ -spaces. It is easy to check that stratifiable spaces are wcc-spaces [18], and k-semistratifiable spaces are $k\beta$ -spaces [17]. We don't know whether there is a regular k-semistratifiable space which is not a wcc-space.

Lemma 3.2. Every regular k-semistratifiable space is a $k\beta^+$ -space.

PROOF. Let (X, τ) be a regular k-semistratifiable space. By [4, Theorem 5], there is a function $g: \mathbb{N} \times X \to \tau$ such that

- (1) $x \in g(n+1, x) \subset g(n, x)$ for each $n \in \mathbb{N}, x \in X$;
- (2) If $x_n \in g(n, y_n)$ for each $n \in \mathbb{N}$ and $x_n \to p$ in X, then $y_n \to p$ in X.

We shall show that the g satisfies the Definition 3.1(3). Let $\{x_n\}, \{y_n\}$ be two sequences in X such that $x_n \in g(n, y_n)$ for each $n \in \mathbb{N}$. Suppose that each subsequence of $\{x_n\}$ has a cluster point in X, and let p be a cluster point of $\{x_n\}$. Since X is a regular space, there is a sequence $\{G_n\}$ of open subsets of Xsuch that $\{p\} = \bigcap_{n \in \mathbb{N}} G_n$ and $\overline{G}_{n+1} \subset G_n$ for each $n \in \mathbb{N}$. Then there exist a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ with $x_{n_i} \in G_i$ for each $i \in \mathbb{N}$. If $q \in X$ is a cluster point of the sequence $\{x_{n_i}\}, q \in \bigcap_{i \in \mathbb{N}} \overline{G}_i = \{p\}$, thus p is the unique cluster point of the sequence $\{x_{n_i}\}$, hence $x_{n_i} \to p$, then $y_{n_i} \to p$. Therefore, X is a $k\beta^+$ -space. \Box

Let $f: X \to Y$ be a mapping. f is called countably compact-covering if for each countably compact subset K in Y, their exists a countably compact subset L in X such that $f(L) \supset K$; f is called quasi-perfect [3] if f is closed and $f^{-1}(y)$ is countably compact for each $y \in Y$.

Theorem 3.3. Let $f : X \to Y$ be a closed mapping. If X is a $k\beta^+$ -space, then Y is a $k\beta^+$ -space and f is countably compact-covering.

PROOF. Suppose g is the function on $\mathbb{N} \times X$ satisfying the condition (3) in Definition 3.1. For each $A \subset X, n \in \mathbb{N}$, denoted $\bigcup_{x \in A} g(n, x)$ by g(n, A). Let $h(n, y) = Y \setminus f(X \setminus g(n, f^{-1}(y)))$ for each $n \in \mathbb{N}$ and $y \in Y$. Then h(y, n) is open

in Y and $y \in h(n+1, y) \subset h(n, y)$. Assume that $z_n \in h(n, y_n)$ for each $n \in \mathbb{N}$ and any subsequence of $\{z_n\}$ has a cluster point in Y. Then $f^{-1}(z_n) \subset g(n, f^{-1}(y_n))$. For each $n \in \mathbb{N}$, choose $a_n \in f^{-1}(z_n)$, and then there exists $b_n \in f^{-1}(y_n)$ satisfying $a_n \in g(n, b_n)$.

Case1: $\{z_n : n \in \mathbb{N}\}$ is a finite set.

Without loss of generality, suppose $z_n = z \in Y$ for each $n \in \mathbb{N}$. Then pick $a_n = a \in X$ for each $n \in \mathbb{N}$. So $a \in g(n, b_n)$, and $\{b_n\}$ has a cluster point in X, thus $\{y_n\}$ has a cluster point in Y by the continuity of f.

Case 2: $\{z_n : n \in \mathbb{N}\}$ is an infinite set.

We may assume that $z_n \neq z_m$ if $n \neq m \in \mathbb{N}$. Each subsequence of $\{a_n\}$ has a cluster point in X because each subsequence of $\{z_n\}$ has a cluster point in Y and f is closed. Thus $\{b_n\}$ has a cluster point in X, and $\{y_n\}$ has a cluster point in Y.

In a word, Y is a $k\beta^+$ -space.

Assume K is a countably compact subset of Y. Pick $x_y \in f^{-1}(y)$ for each $y \in K$. Put $E = \{x_y : y \in K\}$. Then $f(\overline{E}) = \overline{f(E)} = \overline{K} \supset K$. We assert that \overline{E} is countably compact in X. Let $\{x_n\}$ be a sequence in \overline{E} with $x_n \neq x_m$ when $n \neq m$. For each $n \in \mathbb{N}, E \cap g(n, x_n) \neq \emptyset$, and choose $z_n \in E \cap g(n, x_n)$.

(1) There is a $p \in X$ such that $z_n = p$ for each $n \in \mathbb{N}$. Then $\{x_n\}$ has a cluster point in \overline{E} .

(2) Suppose $z_n \neq z_m$ when $n \neq m \in \mathbb{N}$. Since $f_{|E} : E \to K$ is an injective mapping and K is countably compact, each subsequence of $\{f(z_n)\}$ has a cluster point in K. Then each subsequence of $\{z_n\}$ has a cluster point in X. Hence $\{x_n\}$ has a cluster point in \overline{E} .

Therefore, f is a countably compact-covering mapping.

Corollary 3.4. [7] Each closed mapping from a regular k-semistratifiable space is compact-covering.

Theorem 3.5. Let $f : X \to Y$ be a quasi-perfect mapping. If Y is a $k\beta^+$ -space, then X is a $k\beta^+$ -space.

PROOF. Let g be the function on $\mathbb{N} \times Y$ satisfying the condition (3) in Definition 3.1 for a $k\beta^+$ -space Y. Definite $h(n, x) = f^{-1}(g(n, f(x)))$ for each $n \in \mathbb{N}$ and $x \in X$. Then h(n, x) is open in X and $x \in h(n + 1, x) \subset h(n, x)$. Assume that $x_n \in h(n, z_n)$ for each $n \in \mathbb{N}$ and any subsequence of $\{x_n\}$ has a cluster point in X. Then any subsequence of $\{f(x_n)\}$ has a cluster point in Y. Since $f(x_n) \in g(n, f(z_n)), \{f(z_n)\}$ has a cluster point in Y.

(1) Suppose that there is $y_0 \in Y$ with $f(z_n) = y_0$ for each $n \in \mathbb{N}$. Then $z_n \in f^{-1}(y_0)$. Since $f^{-1}(y_0)$ is countably compact, $\{z_n\}$ has a cluster point in X.

(2) Suppose $f(z_n) \neq f(z_m)$ when $n \neq m \in \mathbb{N}$. Then $\{z_n\}$ has a cluster point in X.

Hence, X is a $k\beta^+$ -space.

We don't know whether there is a $k\beta$ -space which is not a $k\beta^+$ -space. The authors thank to the referee of this paper for his following result related with the question. A space X is isocompact [1] if every closed countably compact set in X is compact.

Theorem 3.6. Let X be a $k\beta$ -space. If X satisfies one of the conditions below, then X is a $k\beta^+$ -space.

- (1) a regular space whose points are G_{δ} -sets;
- (2) a k-space;
- (3) an isocompact space which is normal or countably paracompact.

Indeed, let $\{x_n\}, \{y_n\}$ be two sequences in a $k\beta$ -space X such that $x_n \in g(n, y_n)$ for each $n \in \mathbb{N}$, and each subsequence of $\{x_n\}$ has a cluster point in X. Denote $L = \{x_n : n \in \mathbb{N}\}$. For (1), $\{x_n\}$ has a convergent subsequence by the similar proof in Lemma 3.2. For (2), we can assume that L is not closed in X. Thus, L has a subsequence contained in a compact set in X. For (3), since L is relatively rightly compact [12](i. e., whenever \mathcal{U} is a locally finite collection of open subsets of X, L meets at most finitely many $U \in \mathcal{U}$), clL is countably compact by [12, Proposition 3.1]. Hence $\{y_n\}$ has a cluster point in X. Thus X is a $k\beta^+$ -space.

By Theorems 3.3 and 3.6, the answer of Question 1.5 is positive if the domain satisfies one of the conditions in Theorem 3.6.

References

- P. Bacon, The compactness of countably compact spaces, Pacific J. Math., 32(1970), 587– 592.
- [2] D. K. Burke, Covering properties, In: K. Kunen, J. E. Vaughan, eds., Handbook of Settheoretic Topology, Elsevier Science Publishers B. V., Amsterdam, 1984, 347–422.
- [3] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
- [4] Zhimin Gao, On g-function separation, Questions Answers in General Topology, 4(1986), 47–57.
- [5] Zhimin Gao, ℵ-space is invariant under perfect mappings, Questions Answers in General Topology, 5(1987), 271–279.
- [6] G. Gruenhage, Generalized Metric Spaces, In: K. Kunen, J. E. Vaughan, eds., Handbook of Set-theoretic Topology, Elsevier Science Publishers B. V., Amsterdam, 1984, 423–501.
- [7] Shou Lin, Mapping theorems on k-semistratifiable spaces, Tsukuba J. Math., 21(1997), 809–815.

146

- [8] Shou Lin, Covering properties of k-semistratifiable spaces, Topology Proc., 29(2005), 199– 206.
- [9] Shou Lin, Generalized Metric Spaces and Mappings (second ed.), Chinese Science Press, Beijing, 2007.
- [10] Chuan Liu, Notes on closed maps, Houston J. Math., 33(2007), 249-259.
- [11] D. J. Lutzer, Semimetrizable and stratifiable spaces, General Topology Appl., 1(1971), 43–48.
- [12] E. Michael, R. C. Olson and F. Siwiec, A-spaces and countably bi-quotient maps, Dissertations Math., 133(1976), 4–43.
- [13] T. Tanaka, Metrizability of certain quotient spaces, Fund. Math., 119(1983), 157-168.
- [14] Y. Tanaka, *Metrization* II, In: K. Morita, J. Nagata, eds., Topics in General Topology, Elsevier Science Publishers B. V., 1989, 275–314.
- [15] Y. Tanaka, Theory of k-networks, Questions Answers in General Topology, 12(1994), 139– 164.
- [16] Y. Tanaka, Chuan Liu, Fiber properties of closed maps, and weak topology, Topology Proc., 24(1999), 323–344.
- [17] Shengxiang Xia, On $k\beta$ -spaces, Math. Japonica, 42(1995), 557–561.
- [18] I. Yoshioka, Closed images of spaces having g-functions, Proc. of General Topology Symposium held in Kobe, December 18-20, 2002, p. 91-100 (http://gt2002.h.kobeu.ac.jp/proceedings.html).
- [19] Ziqiu Yun, On closed maps, Houston J. Math., 31(2005), 193-197.

Received March 19, 2007

Revised version received June 22, 2007

DEPARTMENT OF MATHEMATICS, ZHANGZHOU NORMAL UNIVERSITY, ZHANGZHOU 363000, P. R. CHINA; INSTITUTE OF MATHEMATICS, NINGDE TEACHERS COLLEGE, NINGDE 352100, P. R. CHINA

E-mail address: linshou@public.ndptt.fj.cn

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, GUANGXI TEACHERS COLLEGE, NANNING 530023, P. R. CHINA

E-mail address: zycaigxu2002@126.com

DEPARTMENT OF MATHEMATICS, OHIO UNIVERSITY-ZANESVILLE, OHIO, OH 43701, USA *E-mail address*: liuc1@ohio.edu