

http://topology.auburn.edu/tp/

A note on $\Sigma^{\#}\text{-}\mathrm{spaces}$

by

SHOU LIN AND RONGXIN SHEN

Electronically published on July 23, 2008

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124
COPYRIGHT © by Topology Proceedings. All rights reserved.	

E-Published on July 23, 2008

A NOTE ON $\Sigma^{\#}$ -SPACES

SHOU LIN AND RONGXIN SHEN

ABSTRACT. A space is called a $\Sigma^{\#}$ -space if it has a σ -closurepreserving quasi-(mod k)-network. In this paper, a new characterization of $\Sigma^{\#}$ -spaces is given, which answers a question posed by the first author. Also we characterize spaces with σ cushioned quasi-(mod k)-networks by means of g-functions.

1. INTRODUCTION

The class of Σ -spaces, which was defined by Keiô Nagami [8], plays an important role in the theory of generalized metric spaces. E. Michael [7] and Akihiro Okuyama [10] introduced $\Sigma^{\#}$ -spaces and Σ^{*} -spaces, respectively, as some generalizations, and additionally, Okuyama proved the following theorem.

Theorem 1.1 ([10, Lemma 3.5]). If X is a Σ^* -space (a $\Sigma^{\#}$ -space, resp.), then X has a sequence $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of hereditarily closurepreserving (closure-preserving, resp.) closed covers of X such that any sequence $\{x_n : n \in \mathbb{N}\}$ with $x_n \in C(x, \mathcal{F}_n)$ for some $x \in X$ has a cluster point. In particular, X is a Σ -space if and only if X has a sequence $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of locally finite closed covers of X such that any sequence $\{x_n : n \in \mathbb{N}\}$ with $x_n \in C(x, \mathcal{F}_n)$ for some $x \in X$ has a cluster point.

²⁰⁰⁰ Mathematics Subject Classification. Primary 54A20, 54B15; Secondary 54C10.

Key words and phrases. $\Sigma^{\#}$ -spaces; g-functions; quasi-(mod k)-networks.

The first (corresponding) author is supported by the NSFC (No. 10571151). ©2008 Topology Proceedings.

It is natural to consider whether the inverse is true for Σ^* -spaces and $\Sigma^{\#}$ -spaces in the above theorem. So the first author raised the following question.

Question 1.2 ([4, Question 3.2.4]). If X has a sequence $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of closure-preserving closed covers of X such that any sequence $\{x_n : n \in \mathbb{N}\}$ with $x_n \in C(x, \mathcal{F}_n)$ for some $x \in X$ has a cluster point, is X a $\Sigma^{\#}$ -space?

In this paper, we give an affirmative answer to this question. We also discuss the class of spaces with σ -cushioned quasi-(mod k)-networks.

Let $\mathcal{P} = \{P_{\alpha} : \alpha \in I\}$ be a collection of subsets of a topological space (X, τ) . \mathcal{P} is called *closure preserving* [5] if

$$\overline{\cup\{P_\alpha:\alpha\in J\}}=\cup\{\overline{P_\alpha}:\alpha\in J\}$$

for any $J \subset I$; \mathcal{P} is called *hereditarily closure preserving* [2] if any $\{B_{\alpha} : \alpha \in I\}$ with $B_{\alpha} \subset P_{\alpha}$ for each $\alpha \in I$ is closure-preserving. Throughout this paper, all spaces are T_1 ; we denote \mathbb{N} by the natural numbers and $C(x, \mathcal{P})$ by $\cap \{P \in \mathcal{P} : x \in P\}$ for each $x \in X$.

2. Main results

Definition 2.1. A cover \mathcal{P} of a space X is called a *quasi-(mod k)-network* [10] if there is a closed cover \mathcal{H} of X by countably compact subsets such that whenever $H \subset U$ with $H \in \mathcal{H}$ and U is open in X, then $H \subset P \subset U$ for some $P \in \mathcal{P}$. X is called a Σ -space [8] (a Σ^* -space [10], a $\Sigma^{\#}$ -space [7], resp.) if it has a σ -locally finite (σ -hereditarily closure-preserving, σ -closure-preserving, resp.) closed quasi-(mod k)-network.

Theorem 2.2. For a space X, if X has a sequence $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of closure-preserving closed covers of X such that any sequence $\{x_n : n \in \mathbb{N}\}$ with $x_n \in C(x, \mathcal{F}_n)$ for some $x \in X$ has a cluster point, then X is a $\Sigma^{\#}$ -space.

Proof: Let $\{\mathcal{F}_n : n \in \mathbb{N}\}$ be a sequence of closure-preserving closed covers of X such that any sequence $\{x_n : n \in \mathbb{N}\}$ with $x_n \in C(x, \mathcal{F}_n)$ for some $x \in X$ has a cluster point. Without loss of generality, we can assume that $\mathcal{F}_n \subset \mathcal{F}_{n+1}$ for each $n \in \mathbb{N}$. For each $n \in \mathbb{N}$, put

$$\mathcal{P}_n = \{ \cap \mathcal{E} : \emptyset \neq \mathcal{E} \subset \mathcal{F}_n \}.$$

254

Then each \mathcal{P}_n is a closure-preserving closed cover of X. In fact, it is easy to see each \mathcal{P}_n is a closed cover of X. Let $\{\cap \mathcal{E}_\alpha : \alpha \in \Lambda\} \subset \mathcal{P}_n$, where $\mathcal{E}_\alpha \subset \mathcal{F}_n$ for each $\alpha \in \Lambda$. If $x \notin \cup \{\cap \mathcal{E}_\alpha : \alpha \in \Lambda\}$, then there is an $E_\alpha \in \mathcal{E}_\alpha$ such that $x \notin E_\alpha$ for each $\alpha \in \Lambda$. Since \mathcal{F}_n is closure-preserving,

$$x \in X - \cup \{E_{\alpha} : \alpha \in \Lambda\} = X - \overline{\cup \{E_{\alpha} : \alpha \in \Lambda\}}$$
$$\subset X - \overline{\cup \{\cap \mathcal{E}_{\alpha} : \alpha \in \Lambda\}},$$

which shows that \mathcal{P}_n is closure-preserving. Moreover, we have $C(x, \mathcal{P}_n) \subset C(x, \mathcal{F}_n)$ and $C(x, \mathcal{P}_n) \in \mathcal{P}_n$ for each $x \in X$ and $n \in \mathbb{N}$. Put

$$\mathcal{H} = \{\bigcap_{n \in \mathbb{N}} C(x, \mathcal{P}_n) : x \in X\}.$$

Then \mathcal{H} is a closed cover of X by countably compact sets. For each $x \in X$ and an open set U with $\bigcap_{n \in \mathbb{N}} C(x, \mathcal{P}_n) \subset U$, we prove that there is $m \in \mathbb{N}$ such that $C(x, \mathcal{P}_m) \subset U$; thus, $\bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ is a quasi-(mod k)-network for X. Suppose not; we can choose a sequence $\{x_n : n \in \mathbb{N}\}$ with $x_n \in C(x, \mathcal{P}_n) - U$ for each $n \in \mathbb{N}$, then $\{x_n : n \in \mathbb{N}\}$ has a cluster point y. Since $y \in \overline{\{x_m : m \ge n\}} \subset C(x, \mathcal{P}_n)$ for each $n \in \mathbb{N}, y \in \bigcap_{n \in \mathbb{N}} C(x, \mathcal{P}_n) \subset U$. However,

$$y \in \overline{\{x_n : n \in \mathbb{N}\}} \subset \overline{X - U} = X - U,$$

a contradiction. Hence, X is a $\Sigma^{\#}$ -space.

Theorem 2.2 gives an affirmative answer to Question 1.2. However, the following question is still open.

Question 2.3. If X has a sequence $\{\mathcal{F}_n : n \in \mathbb{N}\}$ of hereditarily closure-preserving closed covers of X such that any sequence $\{x_n : n \in \mathbb{N}\}$ with $x_n \in C(x, \mathcal{F}_n)$ for some $x \in X$ has a cluster point, is X a Σ^* -space?

For a topological space (X, τ) , a function $g : \mathbb{N} \times X \to \tau$ is called a g-function [1] if $x \in g(n+1, x) \subset g(n, x)$ for each $x \in X$ and $n \in \mathbb{N}$. g(n, A) denotes $\bigcup_{x \in A} g(n, x)$ for $A \subset X$. Let \mathcal{P} be a collection of pairs of subsets of X: \mathcal{P} is called a quasi-(mod k)-network [3] for X if there is a closed cover \mathcal{H} of countably compact subsets of X such that whenever $H \subset U$ with $H \in \mathcal{H}$ and U is open in X, then $H \subset P_1 \subset P_2 \subset U$ for some $(P_1, P_2) \in \mathcal{P}$; \mathcal{P} is called *cushioned* [6] if

$$\overline{\cup\{P_1:(P_1,P_2)\in\mathcal{P}'\}}\subset\cup\{P_2:(P_1,P_2)\in\mathcal{P}'\}$$

255

for each $\mathcal{P}' \subset \mathcal{P}$.

Clearly, every $\Sigma^{\#}$ -space is a space with a σ -cushioned quasi-(mod k)-network. In [9], Jun-iti Nagata gave the following characterization of $\Sigma^{\#}$ -spaces.

Theorem 2.4 ([9]). X is a $\Sigma^{\#}$ -space if and only if X has a gfunction satisfying

- (1) for each $x, y \in X$ and $n \in \mathbb{N}$, if $x \in g(n, y)$, then $g(n, x) \subset g(n, y)$;
- (2) for each $x \in X$ and $\{x_n : n \in \mathbb{N}\} \subset X$, if $x \in g(n, x_n)$ for each $n \in \mathbb{N}$, then $\{x_n : n \in \mathbb{N}\}$ has a cluster point.

Similarly, we characterize spaces with σ -cushioned quasi-(mod k)-networks by means of g-functions.

Theorem 2.5. A space X has a σ -cushioned quasi-(mod k)-network if and only if there are a closed cover \mathcal{H} of X by countably compact sets and a g-function such that for each $H \in \mathcal{H}$ and sequence $\{x_n : n \in \mathbb{N}\} \subset X$, if $H \cap g(n, x_n) \neq \emptyset$ for each $n \in \mathbb{N}$, then $\{x_n : n \in \mathbb{N}\}$ has a cluster point in H.

Proof: Necessity. Let $\bigcup_{n \in \mathbb{N}} \mathcal{P}_n$ be a σ -cushioned quasi-(mod k)-network for X with respect to a closed cover \mathcal{H} of countably compact sets, where each \mathcal{P}_n is cushioned and $\mathcal{P}_n \subset \mathcal{P}_{n+1}$ for each $n \in \mathbb{N}$. Define $g : \mathbb{N} \times X \to \tau$ as

$$g(n,x) = X - \cup \{P_1 : (P_1, P_2) \in \mathcal{P}_n, x \notin P_2\}.$$

It is easy to verify that g is a g-function for X. Let $H \in \mathcal{H}$ and $\{x_n : n \in \mathbb{N}\} \subset X$ with $H \cap g(n, x_n) \neq \emptyset$. If $\{x_n : n \in \mathbb{N}\}$ has no cluster point in H, then there is $m \in \mathbb{N}$ such that $H \cap \overline{\{x_n : n \geq m\}} = \emptyset$. Otherwise, for each $k \in \mathbb{N}$, put $F_k = \overline{\{x_n : n \geq k\}}$. Then $\{H \cap F_k\}$ is a decreasing sequence of nonempty closed subsets of H. Hence, there is $h \in \bigcap_{k \in \mathbb{N}} (H \cap F_k)$. This is a contradiction. So there is $m \in \mathbb{N}$ such that $H \subset X - \overline{\{x_n : n \geq m\}}$. Then

$$H \subset P_1 \subset P_2 \subset X - \overline{\{x_n : n \ge m\}}$$

for some $i \in \mathbb{N}$ and $(P_1, P_2) \in \mathcal{P}_i$. Pick $j \geq \max\{m, i\}$, then $g(j, x_j) \subset X - P_1 \subset X - H$, a contradiction. It implies that $\{x_n : n \in \mathbb{N}\}$ has a cluster point in H.

Sufficiency. For each $n \in \mathbb{N}$, put P(n, U) = X - g(n, X - U)for each $U \in \tau$ and $\mathcal{P}_n = \{(P(n, U), U) : U \in \tau\}$, then \mathcal{P}_n is a

256

A NOTE ON $\Sigma^{\#}$ -SPACES

cushioned family. We need only to show that for each $H \in \mathcal{H}$ and $H \subset U \in \tau$, there is $m \in \mathbb{N}$ such that $H \subset P(m, U)$. In fact, if $H \not\subset P(n, U)$ for each $n \in \mathbb{N}$, then there is a sequence $\{x_n : n \in \mathbb{N}\} \subset X - U$ with $H \cap g(n, x_n) \neq \emptyset$ for each $n \in \mathbb{N}$, thus $\{x_n : n \in \mathbb{N}\}$ has a cluster point in H - U, a contradiction. Therefore, X has a σ -cushioned quasi-(mod k)-network. \Box

Acknowledgment. The authors would like to thank the referee for her/his valuable suggestions.

References

- Robert W. Heath, Arc-wise connectedness in semi-metric spaces, Pacific J. Math. 12 (1962), 1301–1319.
- [2] N. Lašnev, Closed images of metric spaces (Russian), Dokl. Akad. Nauk SSSR 170 (1966), 505–507.
- [3] Shou Lin, A note on D-spaces, Comment. Math. Univ. Carolin. 47 (2006), no. 2, 313–316.
- [4] _____, Guangyi duliang kongjian yu yingshe. (Chinese) [Generalized Metric Spaces and Maps]. 2nd ed. Kexue Chubanshe (Science Press), Beijing, 2007.
- [5] E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822–828.
- [6] _____, Yet another note on paracompact spaces, Proc. Amer. Math. Soc. 10 (1959), 309–314.
- [7] _____, On Nagami's Σ-spaces and some related matters, 1970 Proc. Washington State Univ. Conf. on General Topology (Pullman, Wash., 1970). Pi Mu Epsilon, Dept. of Math., Washington State Univ., Pullman, Wash. 13–19.
- [8] Keiô Nagami, Σ -spaces, Fund. Math. **65** (1969), 169–192.
- [9] Jun-iti Nagata, Characterizations of some generalized metric spaces, Notices Amer. Math. Soc. 18 (1971), no. 5, 838. 71T-G151.
- [10] Akihiro Okuyama, On a generalization of Σ-spaces, Pacific J. Math. 42 (1972), 485–495.

(Lin) DEPARTMENT OF MATHEMATICS; ZHANGZHOU NORMAL UNIVERSITY; FUJIAN 363000, P.R. CHINA; AND INSTITUTE OF MATHEMATICS; NINGDE TEACHERS' COLLEGE; FUJIAN 352100, P.R. CHINA

E-mail address: linshou@public.ndptt.fj.cn

(Shen) DEPARTMENT OF MATHEMATICS; TAIZHOU TEACHERS' COLLEGE; TAIZHOU 225300, P. R. CHINA; AND DEPARTMENT OF MATHEMATICS; SICHUAN UNIVERSITY; CHENGDU 610064, P. R. CHINA

E-mail address: srx20212021@163.com