g-METRIZABLE SPACES AND THE IMAGES OF SEMI-METRIC SPACES

YING GE, Jiangsu, SHOU LIN, Fujian

(Received November 8, 2005)

Abstract. In this paper, we prove that a space X is a g-metrizable space if and only if X is a weak-open, π and σ -image of a semi-metric space, if and only if X is a strong sequence-covering, quotient, π and mssc-image of a semi-metric space, where "semi-metric" can not be replaced by "metric".

Keywords: g-metrizable spaces, sn-metrizable spaces, weak-open mappings, strong sequence-covering mappings, quotient mappings, π -mappings, σ -mappings, mssc-mappings

MSC 2000: 54C10, 54D55, 54E25, 54E35, 54E40

1. INTRODUCTION

g-metrizable spaces as a generalization of metric spaces have many important properties [17]. To characterize g-metrizable spaces as certain images of metric spaces is an interesting question in the theory of generalized metric spaces, and many "nice" characterizations of g-metrizable spaces have been obtained ([6], [8], [7], [13], [18], [19]).

Theorem 1.1. The following are equivalent for a space X.

- (1) X is a g-metrizable space.
- (2) X is a quotient, π , σ -image of a metric space [6].
- (3) X is a compact-covering, quotient, π , σ -image of a metric space [13].
- (4) X is a 1-sequence-covering, quotient, σ -image of a metric space [8].

Recently, the following results were given.

This project was supported by NNSF of China (No. 10571151 and 10671173).

Proposition 1.2. The following are equivalent for a space X.

- (1) X is a g-metrizable space.
- (2) X is a weak-open, π , σ -image of a metric space [10].
- (3) X is a strong sequence-covering, quotient, π , mssc-image of a metric space [9].

Unfortunately, the proposition is not true. In this paper, we give an example to show that there exists a g-metrizable space which is not a weak-open, π , σ -image of a metric space and is not a strong sequence-covering, quotient, π , mssc-image of a metric space. As a further investigation on g-metrizable spaces the following is the main theorem of this paper.

Theorem 1.3. The following are equivalent for a space X.

- (1) X is a g-metrizable space.
- (2) X is a weak-open, π , σ -image of a semi-metric space.
- (3) X is a strong sequence-covering, quotient, π , mssc-image of a semi-metric space.

Throughout this paper, all spaces are assumed to be regular and T_1 , all mappings are continuous and onto.

2. Definitions and remarks

Definition 2.1 [4]. Let X be a space.

- (1) $P \subset X$ is called a sequential neighborhood of x in X, if each sequence $\{x_n\}$ converging to x is eventually in P.
- (2) A subset U of X is called sequentially open if U is a sequential neighborhood of each of its points.
- (3) X is called a sequential space if each sequential open subset of X is open.

Definition 2.2 [14]. Let $\mathscr{P} = \bigcup \{ \mathscr{P}_x \colon x \in X \}$ be a cover of a space X with each $x \in \bigcap \mathscr{P}_x$.

- (1) \mathscr{P} is called a network of X, if for each $x \in U$ with U open in X, there exists $P \in \mathscr{P}_x$ such that $P \subset U$, where \mathscr{P}_x is called a network at x in X.
- (2) \mathscr{P} is a cs^* -network of X, if each sequence S converging to a point $x \in U$ with U open in X, is frequently in $P \subset U$ for some $P \in \mathscr{P}_x$.

Definition 2.3. Let $\mathscr{P} = \bigcup \{ \mathscr{P}_x \colon x \in X \}$, where \mathscr{P}_x is a network at x in X, and satisfies the following condition (*) for each $x \in X$.

- (*) If $P_1, P_2 \in \mathscr{P}_x$, then there exists $P \in \mathscr{P}_x$ such that $P \subset P_1 \cap P_2$.
- (1) \mathscr{P} is called a weak base of X [1], if whenever $G \subset X$ and for each $x \in G$ there exists $P \in \mathscr{P}_x$ such that $P \subset G$, then G is open in X, where \mathscr{P}_x is called a weak neighborhood base at x in X.

(2) \mathscr{P} is called an *sn*-network of X [12], if each element of \mathscr{P}_x is a sequential neighborhood of x for each $x \in X$, where \mathscr{P}_x is called an *sn*-network at x in X.

Definition 2.4.

- (1) A space X is called g-metrizable [17] (resp. sn-metrizable [5]), if X has a σ -locally finite weak base (resp. sn-network).
- (2) A space X is called g-first countable [1] (resp. sn-first countable [5]), if X has a weak base (resp. an sn-network) $\mathscr{P} = \bigcup \{ \mathscr{P}_x \colon x \in X \}$ such that \mathscr{P}_x is countable for each $x \in X$.

Notation 2.5. Let d be a non-negative real valued function defined on $X \times X$ such that d(x, y) = 0 if and only if x = y, and d(x, y) = d(y, x) for all $x, y \in X$. d is called a d-function on X. For each $x \in X$, $n \in \mathbb{N}$, put $S_n(x) = \{y \in X : d(x, y) < 1/n\}$.

Definition 2.6. Let d be a d-function on a space X. A space (X, d) is called an *sn*-symmetric space (resp. a symmetric space, a semi-metric space), if d satisfies the following condition (A) (resp. (B), (C)), where d is called an *sn*-symmetric (resp. a symmetric, a semi-metric) on X.

- (A) $\{S_n(x)\}$ is an *sn*-network at x in X for each $x \in X$.
- (B) $\{S_n(x)\}\$ is a weak neighborhood base at x in X for each $x \in X$.
- (C) $\{S_n(x)\}\$ is a neighborhood base at x in X for each $x \in X$.

Remark 2.7. Each weak base of a space is an sn-network, and each sn-network of a sequential space is a weak base [12]. Thus

- (1) g-metrizable spaces \iff Sequential and sn-metrizable spaces.
- (2) Symmetric spaces \iff Sequential and *sn*-symmetric spaces.
- (3) g-first countable spaces \iff Sequential and sn-first countable.
- (4) Semi-metric spaces \iff First countable and *sn*-symmetric spaces.

Definition 2.8 ([15], [18]). Let (X, d) be an *sn*-symmetric (resp. symmetric, semi-metric, metric) space. A mapping $f: X \to Y$ is called a π -mapping with respect to d, if for each $y \in U$ with U open in Y, $d(f^{-1}(y), X - f^{-1}(U)) > 0$.

Definition 2.9. Let $f: X \to Y$ be a mapping.

- (1) f is called a 1-sequence-covering mapping [12], if for each $y \in Y$ there exists $x \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in Y, there exists a sequence $\{x_n\}$ converging to x in X with each $x_n \in f^{-1}(y_n)$.
- (2) f is called a strong sequence-covering mapping [9], if whenever $\{y_n\}$ is a convergent sequence in Y, there exists a convergent sequence $\{x_n\}$ in X with each $f(x_n) = y_n$.

- (3) f is called a sequentially quotient mapping [2], if whenever S is a convergent sequence in Y, there exists a convergent sequence L in X such that f(L) is a subsequence of S.
- (4) f is called a weak-open mapping [20] if there exists a weak base $\bigcup \{\mathscr{P}_y \colon y \in Y\}$ of Y such that for each $y \in Y$, there exists $x \in f^{-1}(y)$, such that whenever U is a neighborhood of x in X, then $P \subset f(U)$ for some $P \in \mathscr{P}_y$.
- (5) f is called a σ -mapping [13], if there exists a base \mathscr{B} of X such that $f(\mathscr{B})$ is σ -locally-finite in Y.
- (6) f is called an *mssc*-mapping [13], if X is a subspace of the product space $\prod_{n \in \mathbb{N}} X_n$ in which each X_n is metrizable, and for each $y \in Y$, there exists a sequence $\{V_n\}$ of open neighborhoods of y in Y such that each $\overline{p_n(f^{-1}(V_n))}$ is a compact subset of X_n , where $p_n \colon \prod_{i \in \mathbb{N}} X_i \to X_n$ is the projection.

Remark 2.10.

- (1) "Strong sequence-covering mappings" in Definition 2.9(2) were called "sequence-covering mappings" in [7], [12], [16], [18], [19], [20].
- (2) Quotient mappings from sequential spaces are sequentially quotient [2].
- (3) Sequentially quotient mappings onto sequential spaces are quotient [2].
- (4) Weak-open mappings from first countable spaces are equivalent to 1-sequencecovering, quotient mappings [20].
- (5) mssc-mappings are σ -mappings [13].

3. The main results

The following example shows that Proposition 1.2 is not true.

Example 3.1. There exists a *g*-metrizable space which is not a strong sequencecovering, π -image of a metric space.

Proof. Let C_n be a convergent sequence containing its limit point p_n for each $n \in \mathbb{N}$, where $C_n \cap C_m = \emptyset$ if $n \neq m$. Let $\mathbb{Q} = \{q_n : n \in \mathbb{N}\}$ be the set of all rational numbers of the real line \mathbb{R} . Put $M = (\bigoplus\{C_n : n \in \mathbb{N}\}) \oplus \mathbb{R}$, and let X be the quotient space obtained from M by identifying each p_n in C_n with q_n in \mathbb{R} . Then

(1) X is a quotient, compact image of a separable metric space M from [18, Example 2.14(3)]. So X has a countable weak base from [12, Corollary 4.7], thus X is g-metrizable, hence X is symmetric.

Recall that a symmetric space (Y, d) is a Cauchy space if for each convergent sequence $\{y_n\}$ in Y and each $\varepsilon > 0$, there exists $k \in \mathbb{N}$ such that $d(y_n, y_m) < \varepsilon$ for

all n, m > k. Y. Tanaka[18] proved that a space is a Cauchy space if and only if it is a strong sequence-covering, quotient, π -image of a metric space.

(2) X is not a Cauchy space from [11, Example 3.1.13(2)], so X is not a strong sequence-covering, quotient, π -image of a metric space by Tanaka's result. X is not a strong sequence-covering, π -image of a metric space from Remark 2.10(3).

The mistake in the papers [9, 10] is the following lemma: Suppose (X, d) is a metric space and $f: X \to Y$ is a quotient mapping. Then Y is a symmetric space if and only if f is a π -mapping with respect to d. The example 16 in [13] shows that there exists a metric space (M, d) and a quotient mapping $f: M \to X$ such that X is a symmetric space, but f is not a π -mapping with respect to d. \Box

The following Lemma is due to the proof of [12, Theorem 4.4].

Lemma 3.2. Let $f: X \to Y$ be a mapping. If $\{B_n\}$ is a decreasing network at some x in X, and each $f(B_n)$ is a sequential neighborhood of f(x) in Y, then whenever $\{y_n\}$ is a sequence converging to f(x) in Y, there is a sequence $\{x_n\}$ converging to x in X with each $x_n \in f^{-1}(y_n)$.

Proof. Let $\{y_n\}$ be a sequence converging to y = f(x) in Y. For each $k \in \mathbb{N}$, there exists $n_k \in \mathbb{N}$ such that $y_n \in f(B_k)$ for each $n > n_k$. Thus $f^{-1}(y_n) \cap B_k \neq \emptyset$ for each $n > n_k$. Without loss of generality, we can assume $1 < n_k < n_{k+1}$ for each $k \in \mathbb{N}$. For each $n \in \mathbb{N}$, pick

$$x_n \in \begin{cases} f^{-1}(y_n), & n < n_1, \\ f^{-1}(y_n) \cap B_k, & n_k \leq n < n_{k+1}. \end{cases}$$

Then each $x_n \in f^{-1}(y_n)$. We show that $\{x_n\}$ converges to x as follows. Let U be a neighborhood of x. There exists $k \in \mathbb{N}$ such that $x \in B_k \subset U$. For each $n > n_k$, there exists $k' \ge k$ such that $n_{k'} \le n < n_{k'+1}$, so $x_n \in B_{k'} \subset B_k \subset U$. This proves that $\{x_n\}$ converges to x.

Lemma 3.3. Let $f: M \to X$ be a mapping with sn-symmetric d on M.

- (1) If X is an sn-symmetric space, then f is a π -mapping with respect to some sn-symmetric on M.
- (2) If f is a sequentially quotient, π -mapping, then X is an sn-symmetric space.

Proof. (1) Let (X, d') be an *sn*-symmetric space. Put $\delta(a, b) = d(a, b) + d'(f(a), f(b))$ for $a, b \in M$. It is clear that δ is a *d*-function on M. Let $a \in M, x \in X$ and $n \in \mathbb{N}$; we denote $\{b \in M : \delta(a, b) < 1/n\}$, $\{b \in M : d(a, b) < 1/n\}$ and $\{y \in X : d'(x, y) < 1/n\}$ by $S_n(a), S_n^1(a)$ and $S_n^2(x)$ respectively.

Claim 1. $\{S_n(a)\}$ is a network at a in M for each $a \in M$.

Let $a \in U$ with U open in M. Since d is an sn-symmetric on M, there exists $n \in \mathbb{N}$ such that $S_n^1(a) \subset U$. Since $d(a,b) \leq \delta(a,b)$ for each $b \in M$, $S_n(a) \subset S_n^1(a) \subset U$. Hence $\{S_n(a)\}$ is a network at a in M.

Claim 2. $S_n(a)$ is a sequential neighborhood of a for each $a \in M, n \in \mathbb{N}$.

Let $\{a_k\}$ be a sequence converging to a in M. Then $\{f(a_k)\}$ converges to f(a) in X. There exist $k_0 \in \mathbb{N}$ such that $d(a, a_k) < 1/2n$ and $d'(f(a), f(a_k)) < 1/2n$ for all $k > k_0$. Then $\delta(a, a_k) = d(a, a_k) + d'(f(a), f(a_k)) < 1/n$ for each $k > k_0$. That is $a_k \in S_n(a)$ for all $k > k_0$. So $\{a_k\}$ is eventually in $S_n(a)$, and $S_n(a)$ is a sequential neighborhood of a in M.

By Claim 1 and Claim 2, δ is an *sn*-symmetric on *M*.

Claim 3. f is a π -mapping with respect to δ .

Let $x \in U$ with U open in X. There exists $n \in \mathbb{N}$ such that $S_n^2(x) \subset U$. If $a \in f^{-1}(x), b \in M - f^{-1}(U)$, then $f(b) \notin U$, and $d'(x, f(b)) \ge 1/n$, thus $\delta(a, b) \ge d'(f(a), f(b)) = d'(x, f(b)) \ge 1/n$. So $\delta(f^{-1}(x), M - f^{-1}(U)) \ge 1/n$.

(2) Let f be a sequentially quotient, π -mapping. Put $d'(x, y) = d(f^{-1}(x), f^{-1}(y))$ for each $x, y \in X$. It is clear that d' is a d-function on X. Let $a \in M, x \in X$ and $n \in \mathbb{N}$; we denote $\{b \in M : d(a, b) < 1/n\}$ and $\{y \in X : d'(x, y) < 1/n\}$ by $S_n(a)$ and $S'_n(x)$ respectively.

Claim 1. $\{S'_n(x)\}$ is a network at x in X for each $x \in X$.

Let U be an open neighborhood of x in X. There exists $n \in \mathbb{N}$ such that $d(f^{-1}(x), M - f^{-1}(U)) \ge 1/n$. If $y \notin U$, then $f^{-1}(y) \subset M - f^{-1}(U)$, hence $d'(x,y) = d(f^{-1}(x), f^{-1}(y)) \ge d(f^{-1}(x), M - f^{-1}(U)) \ge 1/n$, so $y \notin S'_n(x)$. This proves that $S'_n(x) \subset U$.

Claim 2. $S'_m(x)$ is a sequential neighborhood of x for each $x \in X, m \in \mathbb{N}$.

Let $\{x_n\}$ be a sequence converging to x. Since f is sequentially quotient, there exists a sequence $\{a_k\}$ converging to $a \in f^{-1}(x)$ such that each $f(a_k) = x_{n_k}$. There exists $k_0 \in \mathbb{N}$ such that $d(a, a_k) < 1/m$ for all $k \ge k_0$. So $d'(x, x_{n_k}) = d(f^{-1}(x), f^{-1}(x_{n_k})) \le d(a, a_k) < 1/m$ for all $k \ge k_0$, that is, $x_{n_k} \in S'_m(x)$ for all $k \ge k_0$. Thus $\{x_n\}$ is frequently in $S'_m(x)$. It is easy to check that $S'_m(x)$ is a sequential neighborhood of x.

By Claim 1 and Claim 2, d' is an *sn*-symmetric on X.

Corollary 3.4. Each sn-metrizable space is an sn-symmetric space.

Proof. Let X be an *sn*-metrizable space. Then X is a sequentially quotient, π , σ -image of a metric space from [6, Theorem 3.4]. Thus (X, d) is an *sn*-symmetric space by Lemma 3.3(2).

Theorem 3.5. The following are equivalent for a space X.

- (1) X is an *sn*-metrizable space.
- (2) X is a 1-sequence-covering, π , mssc-image of a semi-metric space.
- (3) X is a sequentially quotient, π , σ -image of an *sn*-symmetric space.

Proof. Since each *mssc*-mapping is a σ -mapping by Remark 2.10(5), we only need to prove that $(1) \Longrightarrow (2)$ and $(3) \Longrightarrow (1)$.

(1) \Longrightarrow (2). Suppose that X has a σ -locally-finite sn-network $\mathscr{P} = \bigcup \{\mathscr{P}_x : x \in X\} = \bigcup \{\mathscr{P}_n : n \in \mathbb{N}\}$, where each \mathscr{P}_x is an sn-network at x in X and each $\mathscr{P}_n = \{P_\beta : \beta \in A_n\}$ is a locally finite family of subsets of X. Without loss of generality, we can suppose that each \mathscr{P}_n is closed under finite intersections and $X \in \mathscr{P}_n \subset \mathscr{P}_{n+1}$. Each A_n is endowed the discrete topology. Put

$$M = \{ b = (\beta_n) \in \prod_{n \in \mathbb{N}} A_n \colon \{ P_{\beta_n} \} \text{ is a network at some point } x_b \text{ in } X \}.$$

Then M is a metric space, and $f: M \to X$ defined by $f(b) = x_b$ is a mapping.

Claim 1. f is a 1-sequence-covering mapping.

Let $x \in X$. For each $n \in \mathbb{N}$, there exists $\beta_n \in A_n$ such that $P_{\beta_n} = \bigcap \{P \in \mathscr{P}_n \ P \in \mathscr{P}_x\} \in \mathscr{P}_x$. Thus $\{P_{\beta_n}\}$ is a network at x in X. Put $b = (\beta_n)$, then $b \in f^{-1}(x)$. Let $B_n = \{(\gamma_k) \in M: \ \gamma_k = \beta_k \text{ for } k \leq n\}$ for each $n \in \mathbb{N}$. We prove that $f(B_n) = \bigcap_{k \leq n} P_{\beta_k} \in \mathscr{P}_x$ for each $n \in \mathbb{N}$ as follows.

In fact, let $c = (\gamma_k) \in B_n$. Then $f(c) \in \bigcap_{k \in \mathbb{N}} P_{\gamma_k} \subset \bigcap_{k \leq n} P_{\beta_k}$, so $f(B_n) \subset \bigcap_{k \leq n} P_{\beta_k}$. On the other hand, let $y \in \bigcap_{k \leq n} P_{\beta_k}$. Then there exists $c' = (\gamma'_k) \in M$ such that f(c') = y. For each $k \in \mathbb{N}$, put $\gamma_k = \beta_k$ if $k \leq n$, and $\gamma_k = \gamma'_{k-n}$ if k > n. Then $\{P_{\gamma_k}\}$ is a network at y in X. Let $c = (\gamma_k)$, then $c \in B_n$ and f(c) = y, so $y \in f(B_n)$. Thus $\bigcap_{k \in N} P_{\beta_k} \subset f(B_n)$.

It is obvious that $\{B_n\}$ is a decreasing neighborhood base at b in M. Thus f is a 1-sequence-covering mapping by Lemma 3.2.

Claim 2. f is an mssc-mapping.

For each $x \in X$, $n \in \mathbb{N}$, there exists an open neighborhood V_n of x in X such that V_n only meets with finite by many elements in \mathscr{P}_n because \mathscr{P}_n is locally finite in X. Let $\Lambda_n = \{\beta \in A_n : P_\beta \cap V_n \neq \emptyset\}$, then Λ_n is finite in A_n and $\overline{p_n(f^{-1}(V_n))} \subset \Lambda_n$ is compact. Hence f is an *mssc*-mapping.

Claim 3. f is a π -mapping with respect to some semi-metric on M.

X is an *sn*-symmetric space from Corollary 3.4. Thus f is a π -mapping with respect to some semi-metric on M from Lemma 3.3(1) and Remark 2.7(4).

(3) \implies (1). Let M be an sn-symmetric space, and $f: M \to X$ a sequentially quotient, π , σ -mapping. Then X is an *sn*-symmetric space from Lemma 3.4(2). Thus X is sn-first countable. Since a space is sn-metrizable if and only if it is an sn-first countable space with a σ -locally finite cs^{*}-network [6], to complete the proof it suffices to prove that X has a σ -locally finite cs^* -network. Since f is a σ -mapping, there exists a base \mathscr{B} of M such that $f(\mathscr{B})$ is a σ -locally-finite family in X. Let Sbe a sequence converging to $x \in U$ with U open in X. There exists a sequence L converging to some $a \in f^{-1}(x)$ such that f(L) is a subsequence of S. Thus there exists $B \in \mathscr{B}$ such that $a \in B \subset f^{-1}(U)$. So L is eventually in B, hence f(L)is eventually in $f(B) \subset U$. Thus S is frequently in $f(B) \in f(\mathscr{B})$. So $f(\mathscr{B})$ is a cs^* -network of X.

We have the following main theorem of this paper by Remarks 2.7, 2.10 and Theorem 3.5.

Theorem 3.6. The following are equivalent for a space X.

(1) X is a *g*-metrizable space.

(2) X is a weak-open, π , mssc-image of a semi-metric space.

(3) X is a weak-open, π, σ -image of a semi-metric space.

(4) X is a strong sequence-covering, quotient, π , mssc-image of a semi-metric space.

(5) X is a strong sequence-covering, quotient, π, σ -image of a semi-metric space.

Remark 3.7. By Example 3.1, "semi-metric" in Theorem 3.6 can not be replaced by "metric".

References

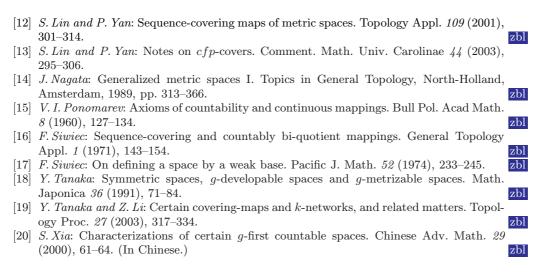
- [1] A. V. Arhangel'skii: Mappings and spaces. Russian Math. Surveys 21 (1966), 115–162.
- [2] J. R. Boone and F. Siwiec: Sequentially quotient mappings. Czech. Math. J. 26 (1976), 174 - 182. $^{\mathrm{zbl}}$
- [3] R. Engelking: General Topology (revised and completed edition). Heldermann-Verlag, Berlin, 1989. $^{\mathrm{zbl}}$ $^{\mathrm{zbl}}$

 $_{\rm zbl}$

 $^{\mathrm{zbl}}$

- [4] S. P. Franklin: Spaces in which sequences suffice. Fund. Math. 57 (1965), 107–115.
- [5] Y. Ge: On sn-metrizable spaces. Acta Math. Sinica 45 (2002), 355–360.
- [6] Y. Ge: Characterizations of sn-metrizable spaces. Publ. Inst. Math., Nouv. Ser. 74 (2003), 121-128.
- [7] Y. Ikeda, C. Liu and Y. Tanaka: Quotient compact images of metric spaces, and related matters. Topology Appl. 122 (2002), 237-252. \mathbf{zbl}
- [8] J. Li: A note on g-metrizable spaces. Czech. Math. J. 53 (2003), 491-495.
- [9] Z. Li: A note on ℵ-spaces and g-metrizable spaces. Czech. Math. J. 55 (2005), 803–808. zbl
- [10] Z. Li and S. Lin: On the weak-open images of metric spaces. Czech. Math. J. 54 (2004), \mathbf{zbl} 393 - 400.

[11] S. Lin: Point-Countable Covers and Sequence-Covering Mappings. Chinese Science Press, Beijing, 2002. $^{\mathrm{zbl}}$



Author's address: Ying Ge, Department of Mathematics, Suzhou University, Jiangsu 215006, P. R. China, e-mail: geying@pub.sz.jsinfo.net; Shou Lin, Department of Mathematics, Ningde Teachers' College, Fujian 352100, P. R. China, e-mail: linshou@public.ndptt.fj.cn.