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Abstract In this paper, we discuss the countable tightness of products of spaces which are quotient s-

images of locally separable metric spaces, or k-spaces with a star-countable k-network. The main result

is that the following conditions are equivalent: (1) b = ω1; (2) t(Sω×Sω1) > ω; (3) For any pair (X, Y ),

which are k-spaces with a point-countable k-network consisting of cosmic subspaces, t(X × Y ) ≤ ω

if and only if one of X, Y is first countable or both X, Y are locally cosmic spaces. Many results on
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1 Introduction

All spaces are regular and T1, all maps are continuous and onto. The countable tightness
of product spaces was investigated in [1], [2] and [3], and others. In this paper we consider
the countable tightness of products of k-spaces with certain k-networks. By using results on
countable tightness of product spaces, we give a necessary and sufficient condition for the
products of k-spaces having a point-countable k-network with some properties to be a k-space.

It is well known that the concept of “base” is one of the most important concepts for
topological spaces. As a generalization of “base”, the notion of “k-network” was introduced
by O’Meara [4]. He used this concept to discuss paracompactness in function spaces with the
compact-open topology. In this paper we shall show some applications of “k-network” about
countable tightness and k-space property of product spaces. Let us recall some definitions.

Definition 1.1 Let P be a cover of a space X.
P is called a network for X if for any point x ∈ X, and for any open set U with x ∈ U ,

x ∈ P ⊂ U for some P ∈ P. P is called a k-network for X if for any compact set K of X,
and for any open set U with K ⊂ U , K ⊂ ⋃

F ⊂ U for some finite F ⊂ P.
A cosmic space is a space with a countable network. An ℵ0-space is a space with a countable

k-network. An ℵ-space is a space with a σ-locally finite k-network.

Definition 1.2 Let F be a cover of a space X. X is determined by F if A ⊂ X is closed
whenever A ∩ F is closed in F for each F ∈ F .
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A k-space (resp. sequential space) is a space determined by the cover of all compact subsets
(resp. compact metric subsets). A kω-space is a space determined by a countable cover of
compact subsets.

It is known that the product of two k-spaces need not be a k-space. Michael [5] posed
the following natural problem: “Let X and Y be k-spaces. Find the sufficient and necessary
conditions for X × Y to be a k-space.” A partial answer to the above problem is given by
Tanaka. Let X and Y be topological spaces. We say that the pair (X, Y ) satisfies the Tanaka
condition if one of the following conditions is satisfied:

(a) Both X and Y are first countable;
(b) One of X, Y is locally compact, and the other is a k-space;
(c) Both X and Y are local kω-spaces.
It is easy to see that X ×Y is a k-space if (X, Y ) satisfies the Tanaka condition. Tanaka [6;

Theorem 3.1] got a sufficient and necessary condition for product spaces on k-and ℵ-spaces.
Theorem 1.3 Let X and Y be k-and ℵ-spaces. Then X × Y is a k-space if and only if the
pair (X, Y ) satisfies the Tanaka condition.

To state further results about Michael’s problem, we recall a set-theoretic axiom. Let ωω

be the set of all functions from ω to ω. For f, g ∈ ωω, define g ≤*f if {n ∈ ω : f(n) < g(n)}
is finite. Let b = min {γ: there is a ≤*-unbounded family A ⊂ ωω with |A| = γ}, where A is
“≤*-unbounded” if and only if no f ∈ ωω is *≥ every g ∈ A. By BF(ω2), we mean “b ≥ ω2”.
It is known that: (1) b ≥ ω1; (2) (CH)⇒ ¬BF(ω2) ⇔ “b = ω1”; (3) (MA)⇒ “b = 2ω” [7].

A closed image of a metric space is called a Las̆nev space. Tanaka [8, Theorem 1.1] proved
that Theorem 1.3 remains valid if X, Y are Las̆nev spaces under (CH). Gruenhage [9, Theorem 1]
improved Tanaka’s result. Let α be an infinite cardinal number and Sα the quotient space
obtained from the disjoint union of α convergent sequences by identifying all limit points. The
Sα is a Las̆nev space, which is called a fan space, in particular, Sω is called a sequential fan.
Let P = {Pα : α ∈ A} be a collection of subsets of a space X. P is compact-countable if each
compact subset of X meets at most countably many Pα. Every Las̆nev space has a compact-
countable k-network. Liu and Tanaka investigated the k-space property of the products of
spaces with certain k-networks ([10, Theorem 2.6], [11, Theorem 3.4]) and the generalized
Gruenhage’s result as follows.
Theorem 1.4 The following conditions are equivalent :

(1) b = ω1;
(2) Sω × Sω1 is not a k-space ;
(3) For any pair (X, Y ), where X, Y have a compact-countable k-network, X×Y is a k-space

if and only if (X, Y ) satisfies the Tanaka condition.
Definition 1.5 A space X has countable tightness (simply, t(X) ≤ ω) if, whenever x ∈ clA,
x ∈ clB for some countable subset B of A.

As is well known, t(X) ≤ ω if and only if X is a space determined by the cover of all countable
subsets. Every hereditary separable space or sequential space has countable tightness. Every
subspace of spaces with countable tightness has countable tightness. The countable tightness
is preserved by quotient mappings [12]. Let P = {Pα : α ∈ A} be a collection of subsets of
a space X. P is point-countable if each point of X is contained in at most countably many
Pα. Gruenhage, Michael and Tanaka [13, Corollary 3.4] proved that any k-space with a point-
countable k-network is a sequential space, and hence has countable tightness. Therefore we
have the following problem:
Problem 1.6 Let X, Y be spaces with certain k-networks. What are the necessary and
sufficient conditions for the product X × Y to have countable tightness ?

The main result in this paper is the following theorem, which gives a partial answer to the
above problem and deduces many results on the k-space property of products of spaces with
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certain k-networks:
Theorem 1.7 The following conditions are equivalent :

(1) b = ω1;
(2) t(Sω × Sω1) > ω;
(3) For any pair (X, Y ), which are k-spaces with a point-countable k-network consisting of

cosmic subspaces, t(X × Y ) ≤ ω if and only if : (a) X or Y is first countable; or, (b) both X
and Y are locally cosmic spaces.

At the end of this section we recall the Arens space S2. Let S2 = (N×N)∪N∪{0} endowed
with the following topology: Each point of N × N is an isolated point; a basis of neighborhood
of n ∈ N consists of all sets of the form {n} ∪ {(m, n) : m ≥ k} for each k ∈ N; and U is
a neighborhood of 0 if and only if 0 ∈ U and U is a neighborhood of all but finitely many
n ∈ N. Obviously, Sω is a perfect image of S2. Thus for a space X, if t(S2 × X) ≤ ω, then
t(Sω × X) ≤ ω; and S2 × X is a k-space if and only if Sω × X is a k-space.

2 Countable Tightness of Products of Spaces with Certain k-networks
Let κ be a cardinal number. Let X be a space with |X| ≥ κ, and X1 ⊂ X with |X1| = κ.
We write X1 = {xα : α < κ}. Let Lα = {yα(n) : n ∈ N}, Lα ∩ X = ∅, Lα → yα for each
α < κ, yα = yβ and Lα ∩ Lβ = ∅ if α = β. X(κ) = X ∪ {Lα : α < κ} is the quotient space by
identifying xα and yα with a point for each α < κ. We can see that each point in

⋃{Lα : α < κ}
is an isolated point, and for x ∈ X, the basic neighborhood of x in X(κ) consists of all sets of
the form U ∪ {yα(n) : n ≥ m(α), α ∈ {γ : xγ ∈ U}}, where m(α) ∈ N and U is a neighborhood
of x in X. Put:

T (κ) = {X(κ) : X has countable tightness, and |X| ≥ κ};
L (κ) = {X(κ) ∈ T (κ) : X is a Lindelöf space}.
The following lemmas are the modifications of Lemmas and Theorems in [9] and [2]:

Lemma 2.1 (1) t(Sω × Y ) > ω for each Y ∈ L (b).
(2) For ω ≤ κ < b, t(Sω × X(κ)) ≤ ω if and only if t(Sω × X) ≤ ω.

Proof (1) We write Sω = {x0}∪{xn(i) : i, n ∈ N}, where xn(i) → x0 for each n ∈ N; Y = X ∪
{Lα : α < b}, where Lα = {yα(n) : n ∈ N}. For each α < b, let Hα = {(xn(fα(n)), yα(i)) : i ≤
n ∈ N}, where fα ∈ B, |B|=b, and B is a ≤*-unbounded subset of ωω. Let H =

⋃{Hα : α < b}.
Put Z = {x0} × X. Then Z ∩ clH = ∅.

Otherwise, for each (x0, y) ∈ Z, choose a neighborhood Ufy
×Vy of (x0, y) such that (Ufy

×
Vy) ∩ H = ∅, where fy ∈ ωω, Ufy

= {x0} ∪ {xn(j) : j > fy(n), n ∈ N}, and Vy is a basic
neighborhood of y in Y . {Vy : y ∈ X} is an open cover of a Lindelöf space X, so there exists
a countable subfamily {Vyi

: i ∈ N} which covers X. Since b is a regular cardinal, there is
k ∈ N such that |{α < b : Lα ∩ Vyk

= ∅}| = b and {fγ : γ ∈ A} is ≤*-unbounded, where
A = {α < b : Lα ∩ Vyk

= ∅}. We can pick β ∈ A such that |{n ∈ N : fβ(n) > fyk
(n)}| = ω.

Then (Ufyk
× Vyk

) ∩ Hβ = ∅. In fact, there exists n0 ∈ {n ∈ N : fβ(n) > fyk
(n)} such

that yβ(n0) ∈ Vyk
. Obviously, xn0(fβ(n0)) ∈ Ufyk

, so (xn0(fβ(n0)), yβ(n0)) ∈ Hβ . This is a
contradiction.

Let z ∈ Z ∩ clH. If t(Sω × Y ) ≤ ω, there is a countable subset C of H such that z ∈ clC.
There exists a sequence {αi} of distinct ordinal numbers such that C ⊂ ⋃{Hαi

: i ∈ N}. Pick
f ∈ ωω, f(n) > fαi

(k) for i, k ≤ n ∈ N. Let V = Y \ ⋃{An : n ∈ N}, where An = {yαn
(k) :

k ≤ n}. Then V is open. Let W = Uf × V ; then W is open and z ∈ W , thus W ∩ C = ∅, so
W ∩ Hαm

= ∅ for some m ∈ N, hence (xn(fαm
(n)), yαm

(i)) ∈ Uf × V for some i ≤ n. Thus
xn(fαm

(n)) ∈ Uf , fαm
(n) > f(n), so m > n. On the other hand, yαm

(i) ∈ V , which means
i > m, hence n > m, a contradiction. So t(Sω × Y ) > ω.

As for (2), we may use a method similar to that in [2] to prove it. Here we omit the proof.
For an infinite cardinal number α, let Aα = (

⋃{Cβ : β < α})∪{c} be a space which satisfies
the following: All Cβ’s are countable sets which are pairwise disjoint, c ∈ clCβ \ Cβ for all β,
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and for each finite Fβ ⊂ Cβ , and a subset E ⊂ α,
⋃{Fβ : β ∈ E} is closed in Aα. If each Cβ is

a sequence converging to c, and all points except for c are isolated, then Aα is homeomorphic
to the fan space Sα.
Lemma 2.2 t(Sω × Ab) > ω.
Proof Let B be a ≤*-unbounded subset of ωω with |B| = b. We write Sω = {x}∪{xn(i) : i, n ∈
N}, where the sequence xn(i) → x for each n ∈ N. For each β < b, let Hβ = {(xn(fβ(n)), cβ(i)) :
i ≤ n ∈ N}, where Cβ = {cβ(i) : i ∈ N}, fβ ∈ B. Put H =

⋃{Hβ : β < b}. In view of the
proof of (1) of Lemma 2.1, we can see that (x, c) ∈ clH but there is no countable subset of H
whose closure contains (x, c). So t(Sω × Ab) > ω.
Lemma 2.3 t(Y 2) > ω for each Y ∈ L (ω1).
Proof Let Y = X ∪ {Lα : α < ω1}, where Lα = {yα(n) : n ∈ N} → yα. For each α < ω1,
let fα : ω1 → ω be a function such that fα restricted to α is a one-to-one map onto ω when
α ≥ ω. Put Hα = {(yβ(fα(β)), yα(fα(β))) : β < ω1}, and let H =

⋃{Hα : α < ω1}. Then
X2 ∩ clH = ∅.

Suppose this is not the case. Then for each x ∈ X, there exists a basic neighborhood U(x)
of x in Y such that U(x)2 ∩ H = ∅. {U(x) : x ∈ X} is an open cover of a Lindelöf space
X, and there is a countable subcover {U(xi) : i ∈ N}. Here there exists x′ ∈ X such that
|{α < ω1 : U(x′) ∩ Lα = ∅}|=ω1. Thus there is n0 ∈ N, and A ⊂ {α < ω1 : U(x′) ∩ Lα = ∅}
with |A|=ω1 such that yα(m) ∈ U(x′) ∩ Lα for any m ≥ n0 and α ∈ A. Pick γ ∈ A such
that γ has infinitely many predecessors in A. Since fγ : γ → ω is one-to-one, there must be
δ ∈ A, δ < γ such that fγ(δ) > n0. It is clear that (yδ(fγ(δ)), yγ(fγ(δ))) ∈ U(x′)2 ∩ Hγ , a
contradiction.

Let B be a countable subset of H. There exists a sequence {αi} such that B ⊂ ⋃{Hαi
:

i ∈ N}, and so B ⊂ {(yβi
(fαj

(βi)), yαj
(fαj

(βi))) : i, j ∈ N}. For n ∈ N, put:
L′

βn
= Lβn

\ {yβn
(j) : j ≤ kn}, where kn = max{fαj

(βn) : j ≤ n};
L′′

αn
= Lαn

\ {yαn
(i) : i ≤ ln}, where ln = max{fαn

(βi) : i ≤ n}.
And let:

U = (Y \ ∪{Lβn
: n ∈ N}) ⋃

(∪{L′
βn

: n ∈ N});
V = (Y \ ∪{Lαn

: n ∈ N}) ⋃
(∪{L′′

αn
: n ∈ N}).

Then X ⊂ U ∩ V , and X2 ⊂ U × V . But B ∩ (U × V ) = ∅. In fact, yβi
(fαj

(βi)) ∈ U means
j > i, and yαj

(fαj
(βi)) ∈ V means i > j. Thus X2 ∩ clB = ∅. Therefore, t(Y 2) > ω.

Let P = {Pα : α ∈ A} be a collection of subsets of a space X. P is star-countable if each
Pα meets at most countably many elements of P. Let I = [0, 1] be the closed unit interval.
For an infinite cardinal number κ, I(κ) is a quotient and compact image of a locally separable
metric space and has a star-countable k-network, see [10] for example. Also, it is known that any
separable subspace in I(κ) is an ℵ0-space [14; Corollary 2.5]. The fan space Sκ is homeomorphic
to the quotient space obtained from I(κ) by identifying I with a point. Thus Sκ is a perfect
image of the space I(κ).
Remark 2.4 (1) t(Sω × I(b)) > ω by Lemma 2.1.

(2) If b > ω1, then t(Sω × I(ω1)) ≤ ω by Lemma 2.1.
(3) Let ω ≤ κ < b. Then t(Sω × Sκ) ≤ ω.
(4) t(Sω × Sb) > ω by Lemma 2.2.
(5) t((Sω1)

2) > ω by Lemma 2.3.
Lemma 2.5 Let X be a k-space with a point-countable k-network. Then X has a point-
countable base if X contains no closed copy of either Sω or S2 [15; Corollary 3.9].

We call W a sequential neighborhood of A if any sequence L which converges to a point of
A is eventually in W .
Theorem 2.6 The following conditions are equivalent :

(1) b = ω1;
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(2) t(Sω × Sω1) > ω;
(3) For any pair (X, Y ), which are k-spaces with a point-countable k-network consisting of

cosmic subspaces, t(X × Y ) ≤ ω if and only if : (a) X or Y is first countable; or, (b) both X
and Y are locally cosmic spaces.

Proof (1) ⇒ (3). “Only if”: t(Sω×Z) > ω for Z ∈ L (ω1) by Lemma 2.1, and t(Sω×Sω1) > ω
by Remark 2.4.

Suppose neither X nor Y is first-countable. Then X and Y contain a closed copy of either
Sω or S2 by Lemma 2.5. Without loss of generality, we assume that X and Y contain a closed
copy of Sω. Let B be a point-countable k-network of Y , and let each element of B be a cosmic
subspace.

Claim For y ∈ Y , there is a countable subfamily B1 ⊂ B such that ∪B1 is a sequential
neighborhood of y.

Suppose this is not the case. For a sequence y1(n) → y, let P1 = {P ∈ B : P∩({y}∪{y1(n) :
n ∈ N}) = ∅}. Then |P1| ≤ ω. Since ∪P1 is not a sequential neighborhood of y, there exists
a sequence y2(n) → y such that {y2(n) : n ∈ N} ∩ (∪P1) = ∅. Let P2 = {P ∈ B :
P ∩{y2(n) : n ∈ N} = ∅}. Then |P2| ≤ ω. Since ∪(P1 ∪P2) is not a sequential neighborhood
of y, there is a sequence y3(n) → y such that {y3(n) : n ∈ N} ∩ (∪(P1 ∪ P2)) = ∅. Let
P3 = {P ∈ B : P ∩ {y3(n) : n ∈ N} = ∅}. Clearly |P3| ≤ ω. Inductively, we can get
a sequence {{yα(n) : n ∈ N} : α < ω1} such that each element of B meets at most one
{yα(n) : n ∈ N}. Since Y is a sequential space having a k-network B, it is not difficult to check
that {y}∪{yα(n) : α < ω1, and n ∈ N} is a copy of Sω1 . But t(Sω×Y ) ≤ ω, so t(Sω×Sω1) ≤ ω,
a contradiction.

So there is a countable subfamily B1 of B such that ∪B1 is a sequential neighborhood of
y. Also, ∪B1 is a cosmic space, hence it is a hereditary Lindelöf space.

Assuming that Bn has been selected out, where ∪Bn is a sequential neighborhood of ∪Bn−1

and is a Lindelöf space, we can choose a countable subfamily Bn+1 ⊂ B such that ∪Bn+1 is a
sequential neighborhood of ∪Bn.

Suppose this is not the case. For a sequence z1(n) → z1 ∈ ∪Bn, let Q1 = {P ∈ B :
P ∩ ({z1(n) : n ∈ N}∪{z1}) = ∅}. Then |Q1| ≤ ω. Since ∪Q1 is not a sequential neighborhood
of ∪Bn, there is a sequence z2(n) → z2 ∈ ∪Bn such that {z2(n) : n ∈ N} ∩ (∪Q1) = ∅. Let
Q2 = {P ∈ B : P ∩ ({z2(n) : n ∈ N} ∪ {z2}) = ∅}, then |Q2| ≤ ω. Since Q1 ∪ Q2 is a
countable subfamily of B, then there is a sequence z3(n) → z3 ∈ ∪Bn such that {z3(n) : n ∈
N}∩ (∪(Q1 ∪Q2)) = ∅. Let Q3 = {P ∈ B : P ∩ ({z3(n) : n ∈ N}∪{z3}) = ∅}. Then |Q3| ≤ ω.
In this way, we can obtain a sequence {{zα(n) : n ∈ N} : α < ω1} such that zα(n) → zα, and
each element of Bn meets at most one {zα(n) : n ∈ N}.
Case 1 If |{zα : α < ω1}| ≤ ω, then Y must contain a copy of Sω1 , a contradiction.

Case 2 If |{zα : α < ω1}| > ω, then Y contains a subspace Y1 ∈ L (ω1), a contradiction.
By recursion, we can get a sequence {Bn} such that each ∪Bn+1 is a sequential neighbor-

hood of ∪Bn and is a cosmic subspace of Y .
Let V = ∪{∪Bn : n ∈ N}. Then V is a sequential open set containing y and V is a cosmic

subspace. Since Y is a sequential space, V is a neighborhood of y. This implies that Y is locally
cosmic.

“If”: If one of X, Y is first countable, then t(X ×Y ) ≤ ω ([1]). If both X and Y are locally
cosmic, it is clear that t(X × Y ) ≤ ω.

(3) ⇒ (2) Sω, Sω1 are k-spaces with a point-countable k-network consisting of cosmic
subspaces [16, Lemma 1.1], but they do not satisfy (a) or (b), so t(Sω × Sω1) > ω.

(2) ⇒ (1) Since t(Sω × Sω1) > ω, b = ω1 by Remark 2.4.
Let M be a metric space which is not locally separable, and Y = Sω⊕M . Then Y is a k-and

ℵ-space and t(Y 2) ≤ ω, but Y is neither first-countable nor locally separable. Let f : X → Y
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be a map. f is an s-map if f−1(y) is a separable subset of X for each y ∈ Y . By Theorem
2.6, Remark 2.4 and the fact that every quotient s-image of a locally separable metric space
has a point-countable k-network consisting of cosmic subspaces [17; Theorem 2.2], we have the
following:
Corollary 2.7 The following conditions are equivalent :

(1) b = ω1;
(2) For any pair (X, Y ) which are quotient s-images of locally separable metric spaces, or

k-spaces with a star-countable k-network, then t(X × Y ) ≤ ω if and only if : (a) X or Y is
first-countable ; or, (b) both X and Y are locally cosmic spaces.

In view of the proof of Theorem 2.6, it is easy to get the following from Lemma 2.3:
Theorem 2.8 Let X be a k-space with a point-countable k-network consisting of cosmic
subspaces. Then t(X2) ≤ ω if and only if X is locally cosmic.
Corollary 2.9 Let X be a quotient s-image of a locally separable metric space, or a k-space
with a star-countable k-network. Then t(X2) ≤ ω if and only if X is locally cosmic.
Corollary 2.10 Let X be a k-space with a point-countable k-network. Then X has a point-
countable base if and only if t(X × Sb) ≤ ω.
Proof The “if” part follows from Lemmas 2.2 and 2.5. The “only if” part can be obtained
from [1].

Let C be a cover of a space X. X is dominated by C if the union of any C ′ ⊂ C is closed
in X and the union is determined by C ′. As is well known, every CW-complex is dominated
by a cover of compact metric subsets.

Suppose a space X is dominated by a cover C of metric subsets. Put C = {Cα : α ∈ Γ}.
Let D0 = C0, Dβ = Cβ \ ⋃{Cγ : γ < β} for each β ∈ Γ, and let Bβ be a σ-locally finite base
of the metric subspace Dβ . Then B =

⋃{Bβ : β ∈ Γ} is a point-countable k-network (in fact,
a σ-compact-finite k-network [18, Theorem 3]) of X.
Theorem 2.11 (b = ω1) Let X and Y be dominated by a cover of metric subsets and
t(X × Y ) ≤ ω. Then one of the following holds :

(1) X or Y is a metric space ;
(2) Both X and Y are ℵ-spaces.

Proof If neither X nor Y is a metric space, then both X and Y contain a copy of either Sω

or S2 by Theorem 13 in [19]. We may assume that X contains a copy of Sω, so t(Sω × Y ) ≤ ω;
we prove that Y is an ℵ-space.

Let Y be dominated by a cover C of metric subsets. Then Y has a point-countable k-
network B. For each y ∈ Y , there exists a countable subfamily B′ ⊂ B such that y ∈ int(∪B′).
Suppose this is not the case. Then y is not an isolated point. Since Y is a sequential space, Y
has countable tightness. There is a countable subset Y1 of Y such that y ∈ clY1 \Y1. Let P1 =
{B ∈ B : B ∩ Y1 = ∅}. Then |P1| ≤ ω, and since y /∈ int(∪P1), then there exists a countable
subset Y2 of Y such that Y2 ∩ (∪P1) = ∅ and y ∈ clY2 \ Y2. Let P2 = {B ∈ B : B ∩ Y2 = ∅}.
Then |P2| ≤ ω. Inductively, we obtain a disjoint family {Yα : α < ω1} of countable subsets of
Y such that:

(a) y ∈ clYα \ Yα for each α < ω1;
(b) For each finite Fα ⊂ Yα, and a subset E ⊂ ω1,

⋃{Fα : α ∈ E} is closed in Y .
We note that (b) can be obtained from the fact that each element of B meets at most one

Yα, Y is a sequential space, and B is a k-network.
Put Aω1 = {y} ∪ {Yα : α < ω1}. Then t(Sω × Aω1) > ω under b = ω1 by Lemma 2.3, and

t(Sω × Y ) > ω, a contradiction.
So there exists a countable subfamily B′ of B such that y ∈ int(∪B′). For each B ∈ B′, we

choose C(B) ∈ C such that B ⊂ C(B) and y ∈ int(∪C ′), where C ′ = {C(B) : B ∈ B′}. Since
C ′ is countable, then ∪C ′ is dominated by C ′, thus ∪C ′ is an ℵ-space [20, Proposition 11].
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Hence Y is a local ℵ-space. Let {Uy : y ∈ Y } be an open cover of Y with each Uy an ℵ-space.
Since Y is paracompact, there is a locally finite closed refinement {Fδ : δ ∈ Δ} of Y . Let Fδ

be a σ-locally finite k-network of Fδ. It is easy to check that
⋃{Fδ : δ ∈ Δ} is a σ-locally finite

k-network of Y . Thus Y is an ℵ-space. Similarly, we may show that X is an ℵ-space.
Let Iω(resp. Iω1) be the quotient space obtained from the disjoint union of ω (resp. ω1)

many closed unit intervals I’s by identifying 0 with a point. Then Iω and Iω1 are CW-complexes,
and t(Iω × Iω1) ≤ ω under b > ω1 by Lemma 2.8 in [3], but neither Iω is first-countable nor Iω1

is an ℵ-space.

3 k-space Property of Product Spaces

In this section, we use Theorem 2.6 to study the k-space property of product spaces. In view
of the proof of Lemma 2.4 in [17], we have the following:

Lemma 3.1 Let B be a point-countable k-network of a space X. If every first-countable closed
subspace of X is locally compact, then {P ∈ B : clP is countably compact} is a k-network of X.

From Lemmas 3 and 4 in [9], we can get the following:

Lemma 3.2 If Sω ×X is a k-space, then every first-countable closed subspace of X is locally
compact.

By Lemma 3.1 and the property of k-networks, we have:

Lemma 3.3 Let X be a k-and ℵ0-space. If every first countable closed subspace of X is
locally compact, then X is a kω-space.

We say that a space X has a property (∗) if every cosmic closed subspace of X is an ℵ0-space.
The following spaces have the property (∗):

(1) Spaces with a point-countable cs-network [18, Theorem 7].
(2) Spaces with a star-countable k-network, in particular, CW-complexes [21, Proposi-

tion 2].
(3) Spaces with a σ-hereditarily closure-preserving k-network, in particular, Lašnev spaces

[22].
(4) Fréchet spaces with a point-countable k-network [13, Theorem 5.2].

Theorem 3.4 The following conditions are equivalent :
(1) b = ω1;
(2) For any pair (X, Y ) which are k-spaces with a point-countable k-network and have the

property (∗), then X × Y is a k-space if and only if (X, Y ) satisfies the Tanaka condition.

Proof (2) ⇒ (1). Pick Y = I(ω1) ∈ L (ω1). We know that Sω and Y are k-spaces with
point-countable k-networks and have the property (∗), but they do not satisfy one of the (a),
(b) and (c) in Tanaka condition, and so Sω × Y is not a k-space. Since Sω1 is a perfect image
of Y , Sω × Sω1 is not a k-space. Thus b = ω1 by Theorem 1.4.

(1) ⇒ (2). If X, Y satisfy one of (a), (b) and (c) in Tanaka condition, then X × Y is a
k-space.

Let X × Y be a k-space.

Case 1 X and Y contain no closed copy of Sω or S2. By Lemma 2.5, both X and Y have a
point-countable base.

Case 2 Only one of X, Y contains a closed copy of Sω or S2. We assume that X contains a
closed copy of Sω or S2, and Y contains no closed copy of Sω or S2. Then Sω × Y is a k-space,
and Y is first-countable by Lemma 2.5, so Y is locally compact by Lemma 3.2.

Case 3 Both X and Y contain a closed copy of Sω or S2. By Lemma 3.2, every first-countable
closed subset of X and Y is locally compact, and so X and Y have a point-countable k-network
consisting of cosmic subspaces by Lemma 3.1 (Note: A countably compact, k-space with a
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point-countable k-network is metrizable). By Theorem 2.6, X and Y are locally cosmic spaces,
and hence they are local ℵ0-spaces. By Lemma 3.3, they are local kω-spaces.

By Theorem 2.8, and Lemma 3.3, we have the following:
Theorem 3.5 Let X be a k-space with a point-countable k-network and the property (∗).
Then X2 is a k-space if and only if X is a locally separable metrizable space or a local kω-
space.

Theorems 3.4 and 3.5 may be the fairly general forms of the k-space property of products of
spaces with a certain k-network, and they generalize most known results in [9], [10], [11], [19],
[22] and [23]. But the authors do not know if the property (∗) can be omitted or not.
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